SMART
COM

BELA KNJIGA

scripting' napade

ite-

=Sl

Kako prepreciti
'Cross
Vladimir Ban

Kazalo vsebine

Kaj je Cross-site-scripting — osnovna razlaga

Kaj je Cross-site-scripting — tehnicna razlaga

Kdaj in kako pride do ranljivosti?

Zakaj je Cross-site-scripting nevaren?

Kaksni so nivoji »jakosti« Cross-site-scripting ranljivosti?
Kako poteka napad preko Cross-site-scripting ranljivosti?
Kako se ubraniti pred Cross-site-scripting groznjami?

Se ve¢ koristnih informacij

Uvod

Velika vecina danasnjih storitev v Internet omrezju se izvaja preko spletnih aplikacij.
Tehnologija spletnih aplikacij je postala sestavni del nasega Zivljenja. Brez spletnih
aplikacij si prakti¢no ne znamo vec predstavljati Internet omrezja.

Znano pa je, da spletne aplikacije prinasajo tudi veliko varnostnih grozenj, med
katerimi so nekatere lahko zelo nevarne - kraja podatkov, vdor v streznik, zloraba
identitet ipd.

P oy Groznje mnogokrat izhajajo iz tehni¢no slabo

o zasnovanih spletnih strani in aplikacij. Mnogo

- ~ grozenj se nana$a na tehni¢ne podrobnosti

;‘a} posameznih skript 0z. programckov, ki

: sestavljajo posamezno spletno aplikacijo.

i Lastnik aplikacije se tovrstnih ranljivosti

' = velikokrat niti ne zaveda, saj kot prvo spletne

"~ woer aplikacije verjetno ni izdelal sam, kot drugo, pa je

-net programski jezik skript velikokrat nerazumljiv oz.
S datbase nepoznan lastnikom.

header ——————

.com

.org

Skripte in napake v programski kodi niso edini izvor varnostnih ranljivosti spletnih
aplikacij. Spletne aplikacije so lahko ranljive tudi zaradi napacnih varnostnih
nastavitev streznikov in operacijskih sistemov, na katerih te¢ejo, oziroma slabe
zasnove same logike aplikacije.

Dodatno so tu Se groznje, ki izhajajo iz slabih avtentikacijskih mehanizmov za
uporabnike in/ali skrbnike aplikacij. Pozabiti ne smemo niti na groznje, ki izhajajo iz
prisluskovanja prometu in slabih SSL implementacij.

Spletne aplikacije tako skrivajo celo vrsto tehni¢no in vsebinsko zelo razli¢nih
ranljivosti. Ker predstavljajo pomembno vez med uporabniki in podatki, v resnici

velikokrat predstavljajo glavno groznjo informacijskim sistemom v podijet;jih.

Pri tem moramo poudariti, da med ogrozene aplikacije ne sodijo zgolj tiste, ki so ze
na prvi pogled vsebinsko potencialno problemati¢ne (npr. spletna banka, spletna
trgovina ipd.), ampak tudi vse ostale, vklju¢no s (splosnimi) spletnimi mesti podjetij.
Marsikatera tehni¢na ranljivosti in posledi¢no groZnja se enako nanasa na vse tipe
spletnih aplikacij, ne glede na njihovo vsebino.

Res je, da lahko enostavna spletna stran, v primerjavi s kompleksnejSo spletno
aplikacijo, prinasa manj tock, kjer lahko napadalec izkoristi razne tehnicne
ranljivosti. Vendar pa so enostavne spletne strani po drugi strani lahko za napadalce
Se bolj privlacne, saj varnostni mehanizmi znotraj posameznih skript niso tako
zapleteni in mocni, kot to (na sreco) velja za bolj zapletene spletne aplikacije.
Tehni¢na groznja je lahko enako nevarna, ne glede na to ali se ranljivost nahaja
znotraj kompleksne spletne aplikacije, ali pa na neki drugi enostavni spletni strani. V
dokumentu tako enac¢imo pojma spletnih aplikacij in spletnih strani, saj z vidika
grozenj prakti¢no ni razlik.

Nekatere ranljivosti so v praksi pogoste, nekatere pa se pojavljajo redkeje. Nekatere
predstavljajo vecjo groznjo, druge pa predstavljajo zgolj manjSo ogrozenost. Ena
izmed ranljivosti spletnih strani, ki smo jo pri izvajanju varnostnih pregledov
razli¢nih spletnih aplikacij pogosto zaznali, hkrati pa ta ranljivost prinasa nevarnejse
groznje, je 'Cross-site-scripting' (kratica XSS).

V nadaljevanju dokumenta bomo podrobneje obrazlozili ozadje te ranljivosti,

kakSna tveganjaprinasa, kje in kdaj se najbolj pogosto pojavlja in nenazadnje, kako
se pred taksno ranljivostjo obvarujemo.

1. Kaj je Cross-site-scripting
- oshovna razlaga

poglavje

Spletne aplikacije delujejo tako, da se uporabniki preko svojih spletnih brskalnikov
pogovarjajo z aplikacijo, ki te¢e na strezniku. Brskalnik aplikaciji posreduje dolocene
pakete (podatke, klice, vprasanja ipd.), aplikacija pa nato vraca vsebino, ki se prikaze
v brskalniku.

Aplikacija brskalniku vsebino posilja v obliki HTML zapisov. HTML jezik je zelo
enostaven in posledi¢no tudi zelo omejen. Namenjen je predvsem stati¢nim
predstavitvam razlicne vsebine. V sodobnih aplikacijah na interaktivnih spletnih
straneh je takSna omejitev prevelika, zato se je v HTML jeziku Ze dokaj zgodaj pricel
uveljavljati 'javascript' programski jezik. Javascript' programski jezik daje HTML
stranem bistveno vec vsebine in interaktivnosti.

Ko se brskalnik pogovarja s spletno aplikacijo, ta brskalniku poleg klasicne HTML
vsebine, posilja tudi 'javascript' ukaze. Javascript' ukazi se izvrsujejo v brskalniku in
tako dajejo uporabniku dodatno kvaliteto pri prikazovanju spletnih strani.

Ker pa je 'javascript' jezik v
svojih zmogljivostih bistveno

header1,css(a7+ manj omejen, njegova uporaba
(' prinaSa doloCene varnostne
header, css('padding-top’, * + b groznje. Javascript' ukaze, ki se

med delom s spletno aplikacijo
izvajajo v brskalniku, doloca
aplikacija.

Ce je aplikacija Ze v osnovi zlonamerna, lahko brskalnikom naloZi izvajanje ukazov,
ki bodo povzrocili zlonamerno dejanje.

Pri 'Cross-site-scripting' ranljivosti pa imamo v resnici dobronamerno aplikacijo, ki
sama po sebi nima namena brskalnikom nalagati zlonamernih ukazov. Vendar ima

tehni¢no ranljivost, ki napadalcem omogoca vplivati na to, kateri 'javascript' ukazi se
posredujejo brskalnikom.

Ce aplikacija to dovoljuje (v nadaljevanju bomo podrobneje pogledali, na kak$en
nacin), potem taksno ranljivost imenujemo 'Cross-site-scripting' oz. krajse XSS.

Pri XSS gre torej za tehni¢no ranljivost aplikacije, ki jo napadalec tako ali drugace
izkoristi, z namenom Skodovati uporabnikom aplikacije in ne aplikaciji sami.
Omenjena specifika v€asih povzroca »zmedo« pri razumevanju ranljivosti, hkrati pa
ranljivost neupravi¢eno postavlja v manj pomemben polozaj. Kar je lahko zelo
zavajajoce. XSS ranljivost lahko pomeni zelo hude groznje, ki jih bomo podrobneje
tudi opredelili. Na tem mestu omenimo glavne tri:

® nepooblascena prijava v aplikacijo,
e prevzem skrbniskih pravic nad aplikacijo in

e vdor v notranjost omrezja podjetja.

Ravno v tem pogledu so (splosne) spletne strani podjetij pomembne. Cetudi
gostujejo in ne vsebujejo omembe vrednih podatkov in funkcij, Se vedno velja, da
zaposleni v podjetju svoji spletni strani zaupajo. V kolikor vsebuje XSS ranljivost,
lahko napadalec zelo ucinkovito napade uporabnike in preko njih in XSS izvede
napad v notranjost podjetja.

2. Kaj je Cross-site-scripting
- tehni¢na razlaga

poglavje

Na dveh poenostavljenih primerih si bomo XSS ranljivost ogledali bolj podrobno.

I Primer 1:

Imamo spletno stran, kjer objavljamo novice, hkrati pa uporabnikom omogoca
funkcionalnost komentiranja novic. Vpisani komentarji postanejo del spletne strani
in se ob vsakem obisku novice izpiSejo obiskovalcem.

Perpetrator injects the Website
website with a malicious For each visit to the
script that steals each website, the malicious
visitor's session cookies script is activated
Visitor's session cookie
is sent to perpetrator. .
P
T
]
Perpetrator Website Visitor

Perpetrator discovers a
website having a vulnerability
that enables script injection

V normalni situaciji uporabnik pod komentar vpise »Dober ¢lanek!«. Ko pride drug
obiskovalec na to stran, aplikacija njegovemu brskalniku vrne HTML kodo, ki na
koncu vsebuje ta zapis. Napadalec lahko namesto komentarja vpisSe ‘javascript'
zlonamerno kodo. Ko v tem primeru tretji obiskovalec pride na stran, aplikacija
»komentar« napadalca doda v HTML kodo in jo poslje brskalniku obiskovalca. Ce je
koda napisana pravilno, brskalnik uporabnika meni, da gre pri tem delu zapisa
dejansko za 'javascript' kodo, ki jo tudi izvede in ne samo izpise.

I Primer 2:

Imamo spletno stran, ki vsebuje funkcionalnost iskalnika.

@&

Link is sent to Website Visitor Victim conned into

victim via email clicking the link
Browser sends session

cookies to the perpetrator,
enabling access to the
victim’s private data

O [.
Perpetrator Website
Perpetrator embeds a The script is executed

by the web application
and reflected back to
victim's browser

malicious script, enabling
the viewing of user session
cookies, into a hyperlink

V normalni situaciji uporabnik v polje iskalnika vpise »SmartCom«. Aplikacija nato
vrne uporabniku HTML stran, ki med drugim vsebuje stavek »Rezultati iskanja
besede SmartCom so naslednji...« in potem doda izpisek najdenih besed.

Ce pa namesto besede »SmartCom« nekdo v iskalno polje vpise 'javascript kodo'
aplikacija v HTML odgovoru vrne »Rezultati iskanja besede javascript koda so ...«. Ko
HTML odgovor pride do brskalnika, se del »javascript koda« izvede in ne zgolj izpise
kot besedilo.

Navedena primera sta razmeroma poenostavljena in v resnici bi se za boljse
razumevanje morali poglobiti Se v nekaj tehni¢nih podrobnosti (o tem bolj podrobno
v naslednjih poglavjih), vendar dokaj jasno in to¢no prikazujeta dva dejanska tipa
XSS ranljivosti.

® Prvitip je 'Stored Cross-site-scripting..
e Drugi tip je 'Reflected Cross-site-scripting'.

'Stored Cross-site-scripting'

Ta tip ranljivosti izkoris¢a nacin delovanja aplikacije, ko ta v bazo (ali drugam) zapise
vhodni podatek uporabnika. Ta podatek pa v prihodnosti uporabi pri generiranju
HTML strani pri drugih uporabnikih. 'Stored' XSS ranljivost v primerjavi z 'Reflected'
tipom XSS ranljivosti ne potrebuje neposredne interakcije s svojo Zrtvijo. Napadalec
'nastavi past' v dobronamerni (a ranljivi) aplikaciji in ¢aka, da se bo uporabnik/zrtev
v to past ujela.

Napadalec lahko na ta nacin napada Zrtve, ki jih sploh ne pozna. Ce napadalec pri
svojem napadu cilja na to¢no doloceno Zzrtev, pa je odvisen od tega, ali Zrtev
dejansko obisce del aplikacije, kjer je nastavljena past. Ce ni jasno razvidno, da bo
konkretna Zrtev prej ali slej obiskala stran, kjer je past postaviljena, si lahko
napadalec na primer pomaga s 'social-engineering' trikom. Napadalec postavi past,
nato pa Zrtvi poslje e-mail sporocilo, kjer jo poskusa zavesti k obisku strani. Pri tem
napadalec nima vnaprej zagotovljenega uspeha, da bo Zrtev res obiskala stran.
Zavedati se moramo, da URL naslov, kamor napadalec Zeli preusmeriti Zrtev, ni sam
po sebi zlonameren. Kot prvo kaze na zaupanja vredno spletno stran, kot drugo URL
naslov ne vsebuje zlonamernih klicev (ti »¢akajo« na spletni strani). Verjetnost, da bo
Zrtev tak klik izvedla, je lahko zato zelo velika.

'Reflected Cross-site-scripting’

Ta tip ranljivosti je kot zrcalo. Aplikacija res dopusca, da ji nekdo posreduje vhodne
podatke tako, da bo ta vrnila zlonamerne 'javascript' klice, a ti klici se vedno vrnejo
posiljatelju, torej tistemu, ki je zlonamerne vhodne podatke posredoval.

Ker napadalec nima namena napadati samega sebe, je odvisen od dodatnih trikov,
ki jih mora v napadu uporabiti. Oc¢iten primer takSnega dodatnega trika je 'phishing'
e-mail sporocilo, v katerega vstavi URL povezavo. V primerjavi s 'phishing' e-mail
sporocilom, ki smo ga omenijali pri 'Stored' tipu ranljivosti, je tu za napadalca zadeva
bolj zapletena, saj mora URL link v sporocilu dejansko vsebovati tudi zlonamerno
‘javascript' kodo. Zlonamerno kodo napadalec torej ne »shrani« v aplikacijo, ampak
jo mora vstaviti v URL naslov, na katerega mora Zrtev tudi (nehote) klikniti.

Na prvi pogled se zdi, da je XSS ranljivost 'Reflected' tipa manj nevarna, saj je
napadalec neposredno odvisen od odziva zrtve. Vendar se v praksi izkaze, da so
nacini zavajanja lahko zelo ucinkoviti. Nacinov, kako napadalec vstaviljeno
javascript' zlonamerno kodo skrije/zakrije v URL naslovu, je vec.

Se veg, tovrstne ranljivosti so bolj pogoste na spletni strani, tako da napadalec nima
prevelikih tezav z identifikacijo ranljivih tock v aplikaciji, ki jih nato tudi uporabi.

Razlika med ranljivostma je v nacinu, na katerega aplikacija dopus¢a napadalcu, dav
odgovorih dobronamerna aplikacija uporabnikom posreduje zlonamerne 'javascript’
ukaze, ter kako napadalec ranljivost dejansko izrabi v praksi. Ne razlikujeta pa se v

posledicah. V obeh primerih zlonamerna ‘javascript' koda pride do brskalnika
uporabnika in se tam izvede in v obeh primerih lahko napadalec uporablja enake
zlonamerne 'javascript' klice.

3.

s Kdaj in kako pride do ranljivosti?

Aplikacija je pri generiranju HTML odgovora uporabila podatek, ki je priSel od
uporabnika (ali s predhodnim klicem - e gre za 'Reflected' tip ranljivosti, oziroma iz
baze - kadar gre za 'Stored' tip ranljivosti) in s tem nehote v HTML kodo vstavila
zlonamerne 'javascript' ukaze.

Na dveh primerih poglejmo zadevo bolj podrobno.

I Primer 1:

Aplikacija deluje tako, da v danem trenutku vzame podatek o URL naslovu, ki ga je
nazadnje uporabil uporabnik, in ga vstavi v svojo HTML kodo, ki jo v naslednjem
odgovoru posreduje brskalniku.

O P UIILR WIS ~SpaI SLFIT— UALAYIUUIIUCLUIVE. TEUEIY |, WWIVL. T, UISIGY . IIHIS-UIVLA, PaUUiiy. JPA TUPA, IVTESWSIGHL WUIY, UUIUST— GUILS.
5px;">Clean</span= button to clean your source code.</p=

6 <h2 style="color: #2e6c80;">Some useful features:<n2>

7 <ol style="list-style: none; font-size: 14px; line-height 32px; font-weight: bold;">

8 <li style="clear. both;"=
Interactive source editor=/li=

9 <li style="clear: both;"= HTML Cleaning=</i=

0 <li style="clear: both;"= Word to HTML

conversion

11 <li style="clear: both;"=<img style="float: left;" src="h

12 <li style="clear: both;"=<img style="float: lef-t=

13 <li style="clear: both;"»<img style="float:

conversion</li=

<fol>

<p= &nbhsp; </p=

<h2 style="color: #2e6¢80;">Dodana zlonamerna koda</h2>

<table class="editorDemoTable">

<thead=

<tr=

tA Nl mmnn AF Hna Fanbiea s e

Limlan oS " ali="replace text" width="45" /> Find and Replace
ps./fhtml-online.com/img/05-gibberish.png ipberish" width="45" /> Lorem-lpsum generator=/li>
. sre="hitp:/ranljiva.aplikacija/.../dodan_zlonamermni_del" aliz#htmi table div" width="45" /= Table to DIV

Tl il il gl
S~

I Primer 2:

Aplikacija deluje tako, da iz nekega vpisanega parametra, ki ga je prejela, vzame
vsebino in to vsebino kot besedilo vstavi v HTML kodo, ki jo v naslednjem odgovoru
posreduje brskalniku.

<li style="clear: both;"><img style="float: left;" src="https://html-online.com/im¢
Interactive source editor</li=
9 <li style="clear: both;"><img style="float: left,” src="hitps.//htmi-online.com/im¢

10 <li style="clear. both;"><img style="float. left,” src="hitps.//html-online.com/im¢
conversion=/li=

11 <li style="clear: both;"><img style="float: left;" src="hitps://html-online.com/im¢

12 <li style="clear: both;"=<img style="float: left;" src="https://html-online.com/img

13 <li style="clear: both;"»<img style="float: left;" src="hitp:/franljiva.aplikacija/.../c
conversion=/li=

14 </ol=

15 <p= & " sp;
16 =h2 style="color: #f£6c80,;">Dodana zlonamerna koda</h2>=
17 <table class="editor able">

18 <thead=
19 <ir=

20 =td=Name of the feature</td=
21 <td=Example<ftd>

22 <td=Default=itd=

23 =itr|

24 =zithead=

(=-]

Navedena primera sta zelo realna, a je takoj jasno, da se 'javascript' koda ne bo
izvedla sama od sebe, kljub temu, da je aplikacija vsebino z zlonamerno 'javascript'
kodo vstavila v HTML odgovor. Zlonamerna vsebina je v HTML odgovor vstavljena
tako, da brskalnik tega ne dojame kot ukaz. Vstavljena vsebina je namre¢ del
stavkov/vrstic, ki s predhodnimi narekovaji in ostalimi znaki, vstavljeno ‘javascript'
kodo »pokvarijo«.

Napadalci morajo zato zlonamerni kodi dodati Se nekaj znakov, s katerimi poskrbijo,
da se v HTML odgovoru najprej pravilno zakljuci nek drug zaceti stavek. In vrinjena
'javascript' koda pride do izraza na ta nacin, da jo brskalnik prepozna. Napadalec
lahko v navedenih primerih izvede naslednje.

Primer, ko napadalec vrine zgolj 'javascript' kodo.
=li style?"cleﬁr:l both;"==img style="float: left;" src="hitp:/ranljiva. aplikacija/.../dodan_zlonamemi_del” ali="html fable div" width="45" /=

Primer, ko napadalec 'javascript' kodi na zacetku vsebine doda znake »/>, na koncu
pa znake <!-.

<li style="clear: both;"=dodan_zlonamemi_del<!-| ali="html table div" width="45" /> Table to DIV

Z dodatki se situacija v HTML odgovoru spremeni v prid napadalca. Znaki na
zaCetku vsebine povzrocijo, da se zaceta vsebina HTML strani ustrezno zakljuci.
Znaki na koncu vsebine pa sicer niso nujno potrebni za zagon 'javascript' ukazov.
Dodani so zato, da onemogocijo, da vsebina HTML strani kodo vizualno ali kako
drugace »pokvari«.

Kaj to€no mora napadalec v danem trenutku dodati zlonamerni 'javascript' kodi je
odvisno od primera do primera. Znani so klasic¢ni triki, to¢no delujo¢a kombinacija
»trikov« pa je odvisna od konkretne situacije. Potrebno se je zavedati, da za
napadalca ta del ni problemati¢en. Na voljo je kar nekaj ucinkovitih orodij, ki jih
napadalec lahko uporabi, hkrati pa lahko z osnovnim znanjem HTML kode to naredi
tudi sam.

Izvirni »greh« aplikacije je, da podatkov pri
prevzemu ni ustrezno preverila - Ce vsebujejo
‘javascript' ukaze ali druge posebne znake, ki
so tipi¢ni pri zlorabi taksnih ranljivosti. Vsi

vhodni podatki, ki se nato tako ali drugace
uporabijo pri generiranju HTML strani, se
morajo preveriti, preden se dejansko
uporabijo.

. nttp

Attacks w-w
CROSS SITE SCRIPTING
EXPLOITS AND DEFENSE

To velja tako za podatke, kjer je takoj jasno, da jih je vpisal uporabnik, kot tudi za
podatke, ki jih uporabnik ni neposredno vnesel, lahko pa vpliva na njihovo vsebino.
Recimo podatek o tipu brskalnika, ki ga uporabnik uporablja - gre za »sistemski«

podatek, ki ga brskalnik sam doda http paketom pri komunikaciji z aplikacijo, vendar
napadalec lahko s posebnimi skriptami ali programi tudi v takSen podatek vstavi
zlonamerne 'javascript' klice.

Kako to¢no mora aplikacija izvajati preverjanje, bomo podrobneje opredelili v

lo¢enem poglavju, tu navajamo nekaj izhodis¢, ki so se nakazala v zgornjih primerih:

® Aplikacija lahko preverja vsebino podatkov, ki jih Zeli uporabiti, ¢e morebiti vsebujejo
posebne znake, ki se tipicno uporabljajo pri zaklju¢evanju HTML stavkov.

® Aplikacija lahko preverja vsebino podatkov, ki jih Zeli uporabiti, ¢e morebiti vsebujejo
konkretne 'javascript' ukaze.

@ Aplikacija lahko preverja vsebino podatkov, ki jih Zeli uporabiti, ¢e morebiti vsebujejo
posebne znake, ki se tipicno uporabljajo v 'javascript' sintaksi.
V teoriji je vse jasno. Spoznali pa bomo, da v praksi niso vsi nacini preverjanja tudi

nujno ucinkoviti ali mozni.

Dodatno je za aplikacijo pomembno, da zagotovi tudi druge obrambne mehanizme,
ki (ne)posredno vplivajo na uspesnost XSS napadov.

10

4.

poglavje

Zakaj je Cross-site-scripting
nevaren?

Preden nadaljujemo s tehni¢no razlago okolis¢in XSS ranljivosti je cas, da
pogledamo, kakSne so lahko moZne posledice tovrstnih napadov. V besedilu
uporabljamo izraz »zlonamerna« koda. Za kaj v resnici pravzaprav gre? Kaj lahko
povzroci? Kaj 'javascript' jezik zmore in ¢esa se lahko (upravic¢eno) bojimo?

Groznije, ki jih programski jezik prinasa, lahko razdelimo v stiri skupine:

kraja 'Session Cookie' podatka,
zavajanje uporabnika v brskalniku,

pridobivanje informacij iz brskalnika in

ostali napadi.

Kraja 'Session Cookie' podatka

Princip avtentikacije v spletnih aplikacijah je poseben. O tem bi lahko napisali
lo¢eno poglavje, a na kratko razloZeno, je izziv sledec. S stalis¢a uporabnikov je
zadeva enostavna. Uporabnik se prijavi v aplikacijo in od tam dalje so mu na voljo
razne funkcionalnosti. Ce se ne prijavi, dostopa do funkcionalnosti nima.

S stalis¢a aplikacije pa temu ni tako. Aplikacija sprejema klice iz Internet omrezja,
sestavljeni iz mnozice http paketov, ki prihajajo z razlicnimi zahtevki. Nekatere
pakete posiljajo uporabniki, ki se v aplikacijo Se niso prijavili, nekatere pa prijavljeni
uporabniki. Aplikacija lahko brez posebnih mehanizmov spozna, kateri paket
pripada kateri TCP seji, a to s samo avtentikacijo v aplikaciji nima povezave. Delo
uporabnika v aplikaciji namrec¢ sproza vecje stevilo TCP sej in neprakti¢no bi bilo, da
bi se moral uporabnik na zacetku vsake seje posebej in ponovno avtenticirati.
Aplikacija zato uporabi 'Cookie' podatke. Po uspesni avtentikaciji uporabnika
aplikacija generira vrednost, ki ni uganljiva. Vrednost zapiSe v bazo in jo hkrati v
obliki 'Cookie' vrednosti poslje brskalniku uporabnika. Brskalnik nato poskrbi, da je
vsak paket, ki je posredovan aplikaciji, opremljen s tem podatkom in tako aplikacija
ve ali dolo¢en paket dejansko pripada nekemu uporabniku in kateremu pripada. To
je poenostavljen primer uporabe 'Cookie' vrednosti. V praksi lahko aplikacija
mehanizem Se dodatno »zakomplicirag, a vecino aplikacij deluje na ta nacin.

Ce napadalec uporabniku uspe ukrasti 'Cookie' podatek, lahko v njegovem imenu
nepooblasceno vstopa v aplikacijo. Eden izmed klasi¢nih nacinov kraje tega podatka
je preko ‘javascript' ukazov. 'Javascript' ukazi so zmozni v brskalniku prebrati
'‘Cookie' podatek in ga posredovati napadalcu. Pri XSS ranljivosti torej napadalec
lahko poskusa doseci, da pri uporabniku ranljiva aplikacija sprozi ukaze, ki ukradejo
'‘Cookie' vrednost in jo poslje uporabniku.

11

Zavajanje uporabnika v brskalniku

Napadalci si za cilj velikokrat postavijo prevzem kontrole nad delovno postajo zrtve.
To lahko dosezejo z raznimi zlonamernimi datotekami, ki vsebujejo sistemske klice
in posegajo neposredno v operacijski sistem. Vendar 'javascript' jezik taksnih klicev
ne pozna. Napadalec torej ne more sestaviti 'javascript' ukaznega zaporedja, ki bi
mu neposredno omogocalo dostop do operacijskega sistema. V tem smislu je
'javascript' za napadalca mo¢no omejen. V pomo¢ pa je lahko. Ce Zelijo prevzeti
kontrolo nad delovno postajo svoje Zrtve, jo morajo zavesi k zagonu zlonamerne
datoteke.

‘Javascript' lahko pri takSnem zavajanju zelo pomaga. Ko zrtev obis¢e zaupanja
vredno aplikacijo, lahko napadalec vnese 'javascript' ukaze, ki na razlicne nacine
preuredijo spletno stran.

® Ko uporabnik obis¢e ranljivo aplikacijo, se v brskalniku pojavi okno, ki
uporabnika pozove k namestitvi posodobitev za ogled vsebine. Ker se
uporabnik nahaja na zaupanja vredni aplikaciji, je verjetnost, da bo to naredil
dokaj velika. Napadalec seveda poskrbi, da se v tem primeru na delovno
postajo uporabnika namesti prava zlonamerna »exe« datoteka.

® Ko uporabnik obisce ranljivo aplikacijo in klikne na neko funkcijo, se izvede
»tiha« 'redirekcija’ na lazni streznik, ki je poln zlonamernih datotek (na primer v
aplikaciji klikne na prenos PDF, 'javascript' ukazi pa poskrbijo, da se na delovno
postajo uporabnika prenese okuzen PDF iz laznega streznika in ne iz pravega).

Napadalec lahko z 'javascript' ukazi uporabniku pri delu z ranljivo aplikacijo prikaze
laZzna vstopna okna. Uporabnik obiS¢e zaupanja vredno aplikacijo. Javascript' nato
uporabniku med delom na brskalniku prikaze prijavnho okno v Gmail ali Facebook
sistem. Uporabnik misli, da se je brskalnik odjavil iz sistemov, zato vpisSe svoja gesla
in nadaljuje delo s pravo aplikacijo. S tem ima napadalec dostop do Gmail ali
Facebook racuna Zrtve. Ze to je zelo nerodno, dodatno lahko napadalec preko teh
kanalov Zrtev Se enostavneje preprica v namestitev zares Skodljive datoteke.

12

Pridobivanje informacij iz brskalnika

Naslavljanje »bliznjick, ki jih CPU-ji uporabljajo in ki so se sedaj izkazale kot nevarne,
je na videz enostavnejse. TakSne popravke lahko izvedemo na nivoju operacijskih
sistemov (ali s popravki delovanja BIOS-a), oziroma celo na nivoju programske
opreme (ko govorimo o konkretnih napadih na brskalnike preko Spectre ranljivosti).
Vendar je tudi tukaj tezava. Neizbezno bodo ti popravki vplivali na performan¢no
zmogljivost CPU, saj nenazadnje direktno naslavljajo (torej preprecujejo ali pa vsaj
moc¢no omejujejo) uporabo »bliZnjick, ki so jih do sedaj CPU pridno izkoriscale. Vpliv
na performance CPU je torej neizbezen, res pa je, da Se ni Cisto jasno, kako se bo ta
vpliv kazal na dejanske hitrosti izvajanja posameznih aplikacij. Pravih podatkov,
analiz in nenazadnje izkusenj s tem v praksi seveda Se ni na voljo.

Details | Logs || Commands || Rider || XssRays | Tpec || Metwork || webRTC

B Category: Browser (6 Items)
ion: UNKNOWN
VA String: Mozilla/5.0 (Windaws HT 10.0; WOWS4; 1v:49.0) Gecko20100101 Firefo/49.0

Language: sl

Platform: Win32

Bi
Bi
Brox
Bi
Bi
5

Plugins: Adobe Acrobat,Gitrix Oniine Web Deployment Plugin 1.0.0.104 Google Updats Java Deployment Toolkit 8.0.1010.13 Java(TM) Platform SE 8 U101, Microsoft Office 2013 Octoshape Straming
Photo Gal av lugin.Zoom launcher - 3.0.1

= Category: Browser Components (12 Ttems)
Flash: es

VBScript No

PhoneGap: No

Google Gears: No

Web Sockets: Yes
QuickTime: No

RealPlayer- No

Windows Media Player. No
WebRTC: Yes

ActiveX: No

Session Gookies: Ves

Persistent Cookies: Yes
= Category: Hooked Page (5 Ttems)

Page Title: The Bulcher
Page URI hitp

1011.163:3000/demos/butcherfindex htmi
Page Referrer: Unknoun
Host Name/P: 10,10 11.163

Cookies: BEEFHOOK=n0D! DMyi0IrEOSRIO 4V 1KUY if6d
__uima=132760078 1855272251.1500136542. 1500957406.1501059712.3, __uimz=132760078.150105971
lan=gferfe 1

1gQCImHTWREM; cc_:

5 Category: Host (8 Items)
Host Name/P: 10.10.15.12
Date: Wed Aug 23 2017 13:02:20 GMT=0200 (Central Europe Standard Time)

‘Javascript' ukazi ne morejo posegati v operacijski sistem delovne postaje, lahko pa
dostopajo do dolocenih sistemskih podatkov. To so na primer IP naslov delovne
postaje, namescene verzije brskalnika in dodatkov ipd. Gre za tehni¢ne podatke, ki
neposredno ne predstavljajo vdora v omrezje, jih pa napadalec lahko dokaj
ucinkovito uporabi pri nadaljnjih fazah napada, saj sedaj to¢no ve, kaksne ranljivosti
lahko znotraj pravih zlonamernih kod izkoristi. S tem je napadalcu razkrita
marsikatera neznanka, brez katere bi bila priprava napada daljsa ali pa bi bil napad
celo neuspesen.

Ostali napadi

V to skupino sodijo vse ostale potencialne in mozne zlorabe. Nikoli ne smemo

Izpostavimo 'javascript' kodo, ki se omenja v aktualnih ranljivostih 'Specter’, kjer naj
bi bilo mozno preko ‘javascript' ukazov izkoriscati najnovejse ranljivosti na Intel
procesorjih. Mozno naj bi bilo posegati v integriteto brskalnikov, kjer zavihek, ki
dostopa do zlonamerne strani, posega v ostale zavihke, kjer uporabnik dostopa do
varnih aplikacij. Do sedaj je tak »preskok« med zavihki veljal za nemogocega.

13

°. Kaksni so nivoji »jakosti«
Cross-site-scripting ranljivosti?

poglavje

V dosedanjih poglavjih smo spoznali, kaj ranljivost je, kako nastane oz. se pojavi in
kaksne so mozne posledice. V povezavi z ranljivostjo pa je potrebno razumeti Se
naslednje.

Ranljivost ni »€érno-bela«. Obstajajo mesta v aplikaciji, ki so brez tovrstnih ranljivosti,
obstajajo mesta, kjer lahko ranljivost v polnosti izkoristimo, obstajajo pa lahko tudi
mesta, kjer ranljivost tehni¢no obstaja, a je napadalec soocen z omejitvami, ki so
rezultat varnostnih mehanizmov ali pa (za napadalca) »splet nesrec¢nih okolisc¢in«.

Smiselno je razumeti, kaksna so lahko taksna »vmesna« stanja, saj lahko tako

skrbniki laZje dolocijo prioritete potrebnih popravkov.

Definirajmo najprej, kdaj je aplikacija sploh ni ranljiva in kaj pomeni, da je aplikacija
v doloceni tocki polno ranljiva. Predpostavimo, da imamo mesto v aplikaciji, kjer
dejansko pride do tega, da aplikacija prevzame doloc¢en vhodni podatek in ga
prepise v HTML odgovor brskalniku.

Aplikacijo bomo smatrali za
polno ranljivo, ¢e lahko na tej
tocki brskalniku v HTML odgovor

\\\ ’l’), Yrinemg navodilo (v leiki

\ JrCRiTICAL 'javascript' ukaza), da ob prikazu
-‘...‘"‘_:- / é strani iz napadalCevega streznika
[] — . .« .
— . pobere in zazene poljubno
Security Threat Level 'javascript' datoteko.

M EDIUM

Ko govorimo o zlonamerni ‘javascript' kodi velja. Bolj je koda zlonamerna, bolj je
kompleksna. Cetudi aplikacija nima varnostnih mehanizmov proti XSS ranljivosti, si
lahko predstavljamo, da bi napadalci v dolo¢enih primerih imeli vsaj prakti¢no
tezavo, kako v nek podatek vriniti kompleksno 'javascript' kodo, dolZine tudi nekaj
100 kB. Zato napadalci radi izkoris¢ajo naslednjo lastnost HTML strani. HTML stran
lahko neposredno vsebuje vse 'javascript' ukaze, ki so del nekega odgovora, lahko
pa vsebuje zgolj navodilo brskalnikom, da ob prikazu te HTML strani iz tretjega
streznika poberejo 'javascript' datoteko in jo zaZenejo. Ce je takino »navodilo«
mozZno vriniti, pravimo, da je aplikacija na tej tocki polno ranljiva, saj napadalec nima
tezav glede tega, katere 'javascript' ukaze lahko uporabi, katere pa ne.

Ce na drugi strani aplikacija v neki tocki »prepisuje« vhodne podatke v HTML

odgovor, vendar hkrati ne obstaja nobena moznost za vnos zlonamernih ukazov,
pravimo, da aplikacija v tej tocki ni ranljiva.

14

Vmesna stanja so tista, kjer po eni strani ne drzi, da napadalec ne more aplikaciji
vriniti posebnih znakov ali javascript' ukazov, vendar hkrati tudi ne more v polnosti
uporabiti vseh ukazov, ki bi si jih Zelel.

Oglejmo si ta vmesna stanja na stirih primerih.

| 1 Aplikacija posreduje brskalnikom ne-HTML odgovore

V dokumentu smo veckrat omenili, da aplikacija brskalnikom posreduje HTML
odgovore. V resnici pa lahko aplikacija brskalnikom posreduje odgovore tudi v
drugacni obliki (recimo tekstovni, json obliki ipd.). Brskalniki bodo 'javascript' ukaze
izvajali le, ¢e se nahajajo v odgovoru, ki je deklariran kot HTML.

Lahko se torej zgodi, da aplikacija v neki tocki dejansko prevzame vhodni podatek in
ga brez omejitev prepise v svoj odgovor brskalniku, vendar bo tak odgovor oznacen
kot ne-HTML format. Napadalec lahko v taksnih primerih res posreduje brskalnikom
svojih Zrtev odgovore, ki vsebujejo polno zlonamerno ‘javascript' kodo. Vendar
napadalec brskalnikov neposredno ne bo mogel prepric¢ati, da kodo sploh
upostevajo kot 'javascript' kodo.

Taksne tocke torej niso neposredno kriticne. Je pa potrebno v teh primerih vzeti v
obzir celotno delovanje aplikacije. Ce lahko aplikacija pod dolo¢enimi pogoji in
okolis¢inami takSne odgovore vseeno nekje drugje interpretira v HTML obliki, je
zloraba teoreti¢no Se vedno mozna. Ali je temu tako ali ne, pa je vcasih tezko
oceniti.

Odprava tovrstnih toc¢k ni nujna, Se vedno pa je priporocljiva, razen, ¢e dejansko
lahko ocenimo, da naknadni prenos v HTML obliko ni mogoc¢.

| 2 Aplikacija prevec¢ neposredno prenasa vhodne podatke

Druga skrajnost so primeri, ko aplikacija »prevec« dobesedno »prepisuje« vhodne
podatke v HTML odgovore. Ta primer je pomemben predvsem za 'Reflected' tip
ranljivosti.

Ko uporabnik vpise URL naslov (ali pa na njega klikne), brskalnik na URL naslovu
izvede URL kodiranje. To pomeni, da se doloceni posebni znaki pretvorijo v nek drug
zapis (tipicen primer je, da brskalnik preslek prevede v %20). To brskalniki ne storijo
zaradi varnosti, ampak zato, da URL naslovi morebiti ne bi povzrocili kaksnih
tehnic¢nih tezav na prenosu. A posredno s tem lahko mocno oteZijo delo napadalcem
pri XSS 'Reflected' ranljivostih.

15

- M| V primerih, ko aplikacija dejansko
pricakuje vhodni podatek oz. se
zaveda, da gre za podatek, ki je del
URL zapisa, aplikacija najprej

text=+23C%3IE%23%25% 7B% 7D % 7C%SC%3SE%7E%SB%0 3D %60 |Zvede URL dekOdiranJe 0Z. vse

Forms action page x|+

www.wischools.com/tags/htrml_form_submit.asptext=+<>%23%25{}\ " ~[] (& =

Your Browser Sent:

If you look. you can also see the text in your browser's address field. posebne znake Zapige nazaj Vv
prvotno obliko. Brskalnik Zrtve bo
res »pokvaril« 'javascript' kodo, ki
jo je napadalec podtaknil v URL naslov, a bo aplikacija to popravila in 'javascript'
koda bo ob predpisu v HTML odgovor ponovno taksna, kot mora biti.

Lahko se zgodi, da aplikacija bolj slu¢ajno kot namerno vhodni zapis prepise v HTML
odgovor (tipicen primer je, ko v glavo HTML odgovora enostavno s 'copy-paste'
vstavi URL naslov, ki ga je klical uporabnik). V taksnih primerih ni nujno, da aplikacija
izvede URL dekodiranje in 'javascript’ koda se v HTML odgovor zapise v
»pokvarjeni« obliki, v taksni kot jo je poslal brskalnik.

Ce napadalec teste izvaja ro¢no brez brskalnika, izgleda kot, da ranljivost obstaja, a
v praksi jo bo tezko izrabiti, saj bo Zrtev URL do aplikacije vedno poslala preko
brskalnika.

Napadalcu tukaj preostane dvoje. Teoreti¢no je mozno, da napadalec pred napadom
Zzrtvi podtakne skripto ali programcek, ki prepreci, da brskalnik izvede URL
kodiranje. Vendar je to tezko in hkrati se postavlja vprasanje, zakaj napadalec sploh
iSCe XSS ranljivost, Ce pa je svoji zrtvi tako ali tako Ze zmoZen podtikati razne
programcke in skripte.

Druga moznost, ki pa je v »zamiranjuk, izhaja iz dejstva, da ni nujno, da brskalnik
zares izvede URL kodiranje. Doloceni brskalniki (npr. Internet Explorer) do
nedavnega tega niso poceli. Torej obstaja vsaj hipoteticha moznost, da ima
uporabnik brskalnik, ki tega ne bo izvedel in je napad potemtakem pri njem izvedljiv.
Vsekakor taksne tocke niso kriti€ne na enak nacin, kot tiste, kjer je izraba ranljivosti
polna, zgolj iz previdnosti pa svetujemo, da se takSne tocke odpravijo.

| 3 'Reflected’ ranljivost znotraj vsebine paketa ali zaglavja

Izvedeli smo ze, da mora napadalec pri 'Reflected' tipu ranljivosti zrtvi podtakniti
URL naslov, ki vsebuje zlonamerne znake in kodo.

Vendar aplikacija ne sprejema podatkov zgolj iz URL klica. Aplikacije lahko podatke
sprejemajo tudi iz vsebine prejetih paketov (brskalnik poslje podatke v POST obliki
in ne v GET obliki), hkrati pa lahko aplikacija vhodne podatke prevzema iz zaglavja
prejetih paketov (podatek, ki govori o tipu brskalnika uporabnika). Tehni¢no gledano
lahko aplikacija tudi v taksnih primerih te vhodne podatke na nevaren nacin uporabi
pri generiranju HTML odgovora.

16

Using GET

[rupims i comieg sy mame-jobetemai-pheasiecnoankeon | MmO torej situacijo (ki je v resnici dokaj
pogosta pri odkritih XSS ranljivostih),

iz kjer lahko s testom pokazemo, da znamo
<asp> v podatek znotraj vsebine paketa ali v

zaglavje vriniti zlonamerno kodo, ki se

potem v polni obliki pojavi v HTML
podatku. Tehni¢no gledano je to klasi¢na

|U3in9 POST | XSS 'Reflected' ranljivost.
o HTTP Request V praksi pa bo napadalec tezko pripravil
— . .
name=jobek napad, kjer bo zrtev enak paket poslala
=1 | email=jobe@) <aASP> . vee
slectrtarik.com aplikaciji. Napad, ko napadalec vso
zlonamerno kodo vpise v URL in ta URL

naslov podtakne zrtvi v 'phishing' e-mail
sporocilu je zelo nevaren in povsem realen. Napad v katerem napadalec doseze, da
Zrtev aplikaciji poslje zlonamerno kodo v notranjost http paketa, pa zelo neverjeten
in prej hipoteticen kot realen.

Preden taksno tocko opredelimo kot nekriticno Se pozor! VEasih se zgodi, da
aplikacija v neki tocki poslje aplikaciji vnesene podatke v POST obliki. Test pokaze,
da aplikacija nato te podatke ne preveri in posledicno imamo XSS 'Reflected'
ranljivost, ki pa jo ne moremo izrabiti. A marsikdaj aplikacije hkrati podpirajo GET in
POST klice in napadalec lahko v tem primeru malce spremeni aplikacijo. Napadalec
enostavno podatke iz POST klica premakne v GET klic in takSen klic podtakne Zrtvi.
Kot re¢eno smo v praksi ze videli kar nekaj primerov, kjer je takSen napad deloval.

Ce test ni uspeden, lahko zaklju¢imo, da ranljivost ni kriticna. Vseeno pa
priporo¢amo, da se jo odpravi, saj ni nujno, da napadalec ne najde nacina izrabe.

4 Tehnicne specifike brskalnikov ali aplikacij, ki nehote
omejujejo 'Cross-site-scripting' napade

Zadnji primer je redek, a smo ga pri varnostnih pregledih spletnih aplikacij v praksi
Ze zaznali. V¢asih se zgodi, da aplikacija uporabi le del podatkov pri generiranju
novega HTML odgovora. Aplikacija pricakuje vnos nekega besedila in nato v
odgovoru prikaze le prvih 50 znakov tega besedila. Ce aplikacija pri tem prenosu ne
izvaja preverjanj glede 'javascript' ukazov, je aplikacija Se vedno ranljiva. Napadalec
je sicer omejen na prvih 50 znakov, kar v danih okolis¢inah ni nujno dovolj za
izvedbo napada.

Tovrstni primeri so glede ocene ogrozenosti nehvalezni. Pregledovalec oz. skrbnik
lahko oceni, da znotraj omejitve ne zna ali ne more sestaviti pravega napada, a to Se
ne pomeni, da tega ne zmore tudi napadalec. Nikoli ne smemo podcenjevati znanja

evpeee

Taksne tocke v aplikaciji praviloma oznacimo kot kriticne, za takojSno odpravo,
¢etudi neposredno prave zlorabe nismo dokazali.

17

6.

poglavje

Kako poteka napad preko
Cross-site-scripting ranljivosti?

S stalis¢a napadalca mora v aplikaciji najprej identificirati mozne tocke zlorabe,
nato mora pripraviti ustrezne vnose s pravilnimi dodanimi znaki, da se bo
zlonamerna 'javascript' koda zares izvedla. Na koncu pa mora pripraviti dejansko
zlonamerno skripto, ki pa je lahko zelo kompleksna.

O predpripravi v tem dokumentu ne bomo veliko govorili. Opozarjamo pa, da je
misljenje, da je to zelo tezko narediti, napacno. Obstaja namrec cela vrsta orodij, ki
bolj ali manj uspesno identificirajo potencialne ranljive tocke, obstaja pa tudi cela
knjiznica ze pripravljenih 'javascript’' modelov, ki jih napadalec lahko uporabi za
razlicne napade. Vsekakor napadalec potrebuje nekaj znanja o 'javascript' ukazih in
HTML kodi, a sklepanje, da so napadi omejeni zgolj na pescico ‘javascript'
veleumov je dale¢ od resnice.

Na Stirih primerih si podrobneje oglejmo potek napada v praksi, od tocke, ko je
napadalec zZe identificiral ranljivo mesto v aplikaciji in so zlonamerne skripte Ze
pripravljene za napad.

Napad st. 1 - 'Stored' XSS napad preko vnosnih polj -
napad na druge uporabnike ali skrbnika

Aplikacija omogoca vpisovanje komentarjev na straneh. Napadalec lahko pripravi
besedilo za komentar, ki v resnici na ustrezen nacin vsebuje zlonamerne 'javascript'
kode. Ce aplikacija pri vnosu komentarjev ne preverja vsebine, je vnos
zlonamernih skript dokaj enostaven. Verjetno napadalec Se najveC Casa porabi
za dodatke v besedilu, ker Zzeli 'javascript' ukaze vnesti tako, da se pri Zrtvi
izvedejo, brez, da ta postane sumnicava.

Ko napadalec v spletno stran vrine svoje zlonamerne komentarje, je dovolj, da
pocaka, da stran obis¢ejo drugi uporabniki. Ce je spletna stran manj obiskana
(marsikdaj se zgodi, da so XSS ranljivosti bolj prisotne na »starejSem« delu spletne
aplikacije, ki se ne uporablja vec) ali pa napadalec cilia na to¢no dolo¢eno
osebo, bo morebiti moral Se dodatno izzvati osebo, da obis¢e to¢no doloceno
stran. To lahko stori z e-mail 'phishing' sporocilom. TakSno sporocCilo bo zelo
verjetno uspesno, saj sam URL naslov ne vsebuje ni¢ zlonamernega, zato ga
napadalcu ni potrebno skriti. V komentarje novice http://spletna.stran/
novica_dneva.html vpiSe zlonamerno kodo in nato poSlje e-mail sporocilo
»Hej, poglej to novico http://spletna.stran/novica_dneva.html'«.

18

Ce napadom cilja na skrbnike, jih lahko enako uspe$no »preprica«, da obisc¢ejo
stran z nastavljeno pastjo. Na dolo¢eno stran podtakne zlonamerno kodo, nato pa
na strani izvede celo vrsto provokativnih komentarjev, ali pa stran zasuje s
komentariji. Marsikateri skrbnik bo pogledal, kaj se dogaja.

Konkretni primeri:

® |mamo spletno trgovino in spletna stran omogoca komentarje pri artiklih.
Napadalec v te komentarje vstavi zlonamerno kodo. Preko kode dobi na primer
'Cookie' vrednost vseh 7Zrtev, ki artikel obiscejo in tako (preko 'Cookie'
vrednosti) izvede prijavo v aplikacijo. Lahko pa z 'javascript' kodo povzroci, da se
uporabniku pojavi lazno prijavno okno v spletno trgovino. Uporabnik misli, da se je
brskalnik odjavil in se ponovno prijavi, s tem pa napadalcu razkrije svoje geslo.

® Imamo spletno stran, ki omogoca komentarje. Napadalec cilja na skrbnika.
Vnese provokativen komentar (bodisi veliko njih, ali pa vsebinsko provokativen).
Morebiti nato celo izvede funkcijo »prijavi Zaljiv komentar«. Zelo verjetno bo
skrbnik preveril na strani, kaj se dogaja, napadalec pa bo tako dobil bodisi 'Cookie'
vrednost skrbnika, bodisi njegovo geslo.

Napad st. 2 - 'Stored'’ XSS napad preko vnosov
podatkov v profil uporabnika

Prvi primer je povsem realen, a ga v praksi redko sre¢amo. Razvijalci vedo, da je
komentar zelo ocitna mozZna tocka vnosa zlonamernih podatkov, zato so tam
varovalke v veliki meri urejene.

Stage 1

Street field on the Edit Profile page. Verify that ‘Jemy' is affected by the attack
ersions of their given names (8.9 the password for Tom Cat is "tom”)

L
i Human Resources

- [# Welcome Back Jerry - Staff Listing Page

—

Select from the list befow

Tom Lat (emplo
i.lcrf)- Mouse [hr)
|Joanne McDougal (hr)

CreateProfile

|| DeleteProfile

Bolj premeten nacin je vnos zlonamernih podatkov v profil uporabnika. Napadalec si
ustvari svoj profil (Ce gre za spletno stran, ki to omogoca) in v polje (recimo svoj
naslov) vnese zlonamerno 'javascript' kodo.

TakSen nacin je predvsem praktiCen pri napadu na skrbnika. Uporabniki redko

obiskujejo profile drugih uporabnikov (aplikacija verjetno tega sploh ne dopusca).
Skrbnik pa ima praviloma vpogled v vse profile.

19

Pri tem je lahko napadalec potrpezljiv, zgolj vhese kodo v svoj profil ter ¢aka, da
skrbnik pogleda v svoj profil. Lahko pa je napadalec malce bolj provokativen. Na
slovenski spletni strani ustvari profil uporabnika, ki na videz prihaja iz Japonske. Ali
pa v spletni trgovini ustvari uporabnika, izvede veliko Stevilo narocil, ki jih nato takoj
prekliCe. MozZna je tudi situacija, kjer hkrati generira vecje Stevilo uporabnikov s
provokativnimi imeni. Skratka, nacinov kako izzivati skrbnika, da odpre stran z
nasim profilom, je ve¢, in marsikateri je zelo ucinkovit. Ce je napadalec uspel v
stran s profilom vnesti zlonamerno kodo, so 'Cookie' vrednost skrbnika ali pa
njegova gesla zopet v nevarnosti.

Napad st. 3 - 'Stored' XSS napad preko seznama
zadnjih prijav

PrejSnja dva primera sta se nanasala na situacije, kjer je dejansko obstajalo vhosno
polje, ki ga aplikacija ni dovolj zascitila. Vhosna polja so tocke v aplikaciji, kjer je
jasno, da uporabnik neposredno vpliva na besedilo, zato so dobre varovalke na
taksnih tockah pogostejse.

Bistveno manj pogoste so varovalke na tockah, kjer ni takoj jasno, da gre za vnosni
podatek uporabnika. Na primer aplikacija, ki belezi zadnje prijave. Aplikacija ob
prijavi samodejno pobere iz http paketov podatke kot so IP naslov, iz katere spletne
strani je uporabnik prisel ter tip brskalnika. Vse te podatke nato aplikacija izpisuje v
funkciji »pregled zadnjih prijav«.

Vse lepo in prav, a tudi v tem primeru bi morala aplikacija pred belezenjem teh
podatkov natan¢no preveriti vsebino. Ceprav ne gre za podatke, ki jih je
neposredno vpisal uporabnik, lahko napadalec na njih vpliva. Podatek o tipu
brskalnika je podatek, ki ga brskalnik samodejno vpiSe v paket, preden ga poslje
aplikaciji. Napadalec lahko brez vecjih tezav pripravi skripto, kjer podatek
spremeni tako, da mu doda zlonamerne 'javascript' ukaze.

Gre za tipicen napad na skrbnika, saj ostali uporabniki praviloma ne obiskujejo
pregleda drugih uporabnikov. Pri tem lahko napadalec izbere taktiko
»potrpezljivega Cakanja«, lahko pa izbere taktiko »provokacije«. Napadalec
izvede mnogokratno prijavo ali pa stori nekaj nenavadnega z namenom, da
skrbnik preveri, kdo je ta uporabnik in od kje se prijavlja.

| Napad st. 4 - 'Reflected' XSS pri URL Klicih

Prvi trije primeri so se nanasali na 'Stored' tip ranljivosti, ta primer pa se nanasa na
'‘Reflected' tip ranljivosti.

Zvelo pogost primer je primer neobstojecih strani. Spletna stran dobi URL zahtevek.
Ce konkretna podstran obstaja, jo prikaze, ¢e pa ne obstaja, pa uporabnika
preusmeri na prvo stran. Pri tem pa se v glavo HTML strani zapise nazadnje klicani
URL.

20

Ce Y, takSnem primeru napadalec poslje URL naslov
http://spletna.stran/...javascipt_koda..., bo aplikacija vrnila nazaj prvo stran (saj
to¢no taksna podstran s taksnim naslovom ne obstaja)yv glavo HTML strani pa bo
brez preverjanja vpisala klicani URL naslov in pri prikazu bo brskalnik
izvedel 'javascript' kodo.

Phishing attack via
Cross Site Scripting

Vietim
2. Website vulnerable to X55
- *
i J
S .-\ 4, Email
& i Sent to victim
1. XS5 V Web Server | —
Information stolen

Attacker

3. Create email with malicious
hyperlink

59

Povedali smo Ze, da mora pri 'Reflected' tipu ranljivosti napadalec sedaj ta URL
naslov nekako podtakniti zrtvi, da sama klikne na njega.

V osnovi je to relativno enostavno. Dejstvo je, da so 'phishing' e-mail napadi
velikokrat uspesni, v tem primeru pa je podtaknjen URL naslov vsaj delno legalen.
ZacCne se namrec z http:/spletna.stran/... kar je nekaj, Cemur uporabnik zaupa.

Vseeno pa ima napadalec manjSo tezavo. Napadalec v takem URL linku ne more
skriti drugega dela linka, kjer je napisana 'javascript' koda. Marsikateri uporabnik na
ta del sicer ni pozoren, a je 'javascript' koda vseeno »govorecCa« in Ceprav uporabnik
ne pozna 'javascript' ukazov, se mu doloCene besede hitro lahko zdijo sumljive.

Jasno je tudi, da v URL naslov ne moremo podtikati dolge kode, saj je URL naslov, ki
se razteza »Cez 3 strani«, ze sam po sebi sumljiv.

Napadalec lahko naredi dvoje. Kot prvo bo pri 'Reflected' ranljivostih skoraj vedno
uporabil podtikanje 'javascript' ukazov, ki bodo brskalniku velevali, da si 'javascript'
kodo prenese iz drugih streznikov. Hkrati pa bo tudi ta del 'javascript' kode skril v
obliki ...document.write(String.CharCode(1,2,3,...))... Tu napadalec izkorisca
zmoznost v 'javascript' jezika, kjer lahko na mestu ukaza navede string, sestavljen iz
posameznih znakov, kjer znakov sploh ne navede, ampak navede zgolj 'char' kodo
tega znaka. Tako je zlonameren link, ki ga podtakne svojim zrtvam, naslednji
http://zapianja_vredna_stran/.../..document.write(String.CharCode(1,2,3,...))... Kar
pa ni vec tako sumljivo in je uspeh zavajanja zrtev realnejsi.

Kaj natan¢no je namen napadalca, je nato odvisno od same aplikacije. Napadalec
lahko tako uporabnikom krade 'Cookie' vrednosti, lahko poizkusa izvesti prevaro, s
katero si bodo uporabniki nalozili »exe« zlonamerne datoteke... Skratka, od tu dalje
lahko napadalec vsebinsko izvaja vse tiste napade, ki smo jih ze nasteli v tem
dokumentu.

21

7.

poglavje

Kako se ubraniti pred
Cross-site-scripting groznjami?

Za konec poglejmo Se, kako se lahko ubranimo pred XSS groznjami. Nacinov je vec
in marsikdaj je smiselna kombinacija uporabe vec razlicnih nacinov.

Filtriranje znotraj skript spletne aplikacije

Prvi del obrambe se nanasa na same spletne aplikacije. Izvirni greh pri aplikacijah
izhaja iz dejstva, da aplikacija privzame vsebino, ki jo je posredno ali neposredno
vnesel uporabnik. To vsebino nato uporabi pri pripravi HTML odgovorov za
uporabnike, pri tem pa ne izvede preverjanja ali morebiti ta vsebina vsebuje kaj
zlonamernega.

Skripte v aplikacijah morajo torej poskrbeti, da se vsi vhodni podatki ustrezno
preverijo, vsebina, ki bi lahko prinasala nevarnost pa se mora bodisi odstraniti,
bodisi preurediti, da ne predstavlja nevarnosti.

Class Method Results
In |<scriptzalert("XS5')</script=>
Out | But;script&gh;alert{ 8:4139; XS5 8439;) </script>

HTMLEncode(...)

In |<script>alert| 'X558#39;) </script&et;

HTMLDecode(...
(--) Out [<script=alert("X55")</script=

HTMLHelper

In |"onmouseover="alert{document.cookie)’
Out | Bquot;onmouseover=%;alert{document.cookie) 8#39;

EncodeForHtmlAttribute(...)

Pri 'javascript' obrambi imamo na voljo to olajSevalno okolis¢ino, da je 'javascript’
jezik zelo odvisen od posebnih znakov. Tako je marsikdaj povsem dovolj, da na
podatkih izvedemo kodiranje in vsi posebni znaki se bodo spremenili na ta nacin, da
bo 'javascript' koda neveljavna, hkrati pa se bodo tiznaki Se vedno pravilno
prikazovali, Ce so slucajno sestavni del legalnih podatkov.

Kako tocno to znotraj kode izvedemo, je za razvijalca zelo enostavno. Na voljo pa so
tudi razlicne skripte za razli¢na okolja; najdete jih na povezavah, ki jih navajamo v
zadnjem poglavju.

Ne gre toliko za vprasanje, kako to¢no izvesti preverjanje podatkov, ampak bolj za
vprasanje, ali se je razvijalec sploh spomnil, da bi bilo to nujno potrebno in ali je to
preverjanje dejansko izvedel na vseh to¢kah in ne samo na nekaterih.

Napadalec bo preveril vse teoreticno mozne tocke vnosa (nenazadnje mu pri tem
pomagajo razli¢ni ucinkoviti programi), tako da je za njega dovolj, da razvijalec
pozabi na varovalko v eni sami tocki.

22

Kot receno, vprasanje »kako narediti dober filter« ne bi smelo biti prvotnega
pomena, saj je na voljo dovolj narejenih in mnogokrat preizkusenih filtrov. Vseeno
pa Se vedno sreCamo aplikacije, kjer filtri obstajajo, a je kmalu jasno, da gre za
unikatne filtre, ki jih je sprogramiral razvijalec. Sicer to Se ne pomeni, da niso varni,
a praksa se v praksi velikokrat izkaze nasprotno. Med dejanskimi pregledi smo
zaznali primere kjer

je aplikacija na vseh vnosnih podatkih iskala in brisala zapise <script>, a razvijalec je
pri tem spregledal, da je to sicer najbol;j tipi¢en nacin klicanja 'javascript' ukazov, ni pa
edini.

je aplikacije dolo¢ene posebne znake spreminjala v neke druge znake in s tem kvarila
'javascript' sintakso. A napad je bil z uporabe »Replace« funkcije Se vedno mogoc.

je aplikacija omejevala izpis na 50 znakov, hkrati pa je odstranjevala vse zapise v
obliki http:... Na videz je aplikacija tako preprecila vhos kompleksnejsih 'javascript'
zaporedij, hkrati pa je preprecila, da bi se vstavilo navodilo brskalnikom, da si
'javascript' privzamejo z drugih streznikov. A preko 'String.CharCode' je
mozno taksno varovalko zaobiti.

Skratka, prvi del obrambe proti XSS napadom je ustrezno preverjanje podatkov v
aplikaciji, kjer mora veljati naslednje:

Preverjanje podatkov mora biti vklju¢eno na vseh tockah, ki so neposredno vezane
na vnosne podatke.

Preverjanje podatkov mora biti vklju¢eno na vseh tockah, ki so zgolj posredno vezane
na vnosne podatke.

Pri preverjanju podatkov priporo¢amo uporabo Ze narejenih in preverjenih skript in
ne razvoj lastnih skript.

Nastavitev streznika

Na uspesnost XSS napadov lahko vplivajo tudi nastavitve spletnih streZnikov.
Omenimo predvsem dve:

'‘Cookie' mora biti oznacen kot 'http-only' 'Http-only' oznaka preprecuje 'javascript' ukazom
dostop do vrednosti 'Cookie' podatkov. Zascita je dokaj enostavna in je zelo ucinkovita.
Tovrstna nastavitev je na Zalost mnogokrat spregledana.

Vendar pozor. To je zgolj zascita pred napadi, ki imajo za cilj krajo 'Cookie' vrednosti.
Velikokrat se zgodi, da skrbniki poskrbijo za nastavitev, a niso pozorni na XSS ranljivosti. Kar
pa ni prav, saj smo v dokumentu pokazali, da kraja 'Cookie' vrednosti ni edina groznja
‘javascript' ukazov.

TRACE metoda mora biti deaktivirana. To pravilo sicer poc¢asi zamira. Gre namrec za to, da
vklopljena TRACE metoda negira 'http-only' nastavitev na strezniku. Tehni¢no gledano je
znan napad, kjer napadalec preko XSS ranljivosti lahko pridobi 'Cookie' vrednost, ¢etudi ima
ta vklopljeno 'http-only' zascito. V praksi pa temu ni vec tako, saj sodobni brskalniki ze sami
po sebi dokaj uc¢inkovito negirajo uporabo TRACE klicev. Situacija, ko ima streznik vklopljeno
TRACE metodo, niti ne vec tako kritiéna. A vseeno Se vedno priporocamo deaktivacijo
TRACE metode, saj je mnogokrat popolnoma nepotrebna.

23

Omembe vredna je Se ena nastavitev, in sicer vzpostavitev SSL protokola. Vsi vemo,
da je SSL primarno namenjen Sifriranju podatkov in na prvi pogled ni takoj jasno,
kaksna je njegova povezava z XSS ranljivostmi.

Obstajajo primeri, ko aplikacije v HTML odgovore ne vrivajo celotne 'javascript'
kode, ampak povsem zadostuje, da brskalniku nalozijo nalogo, da si kompleksnejSo
skripto pri prikazovanju HTML strani enostavno nalozi iz tretjega streznika. Tu pride
do izraza delovanje sodobnih spletnih brskalnikov. V primeru, da nasa aplikacija
uporablja SSL protokol, ti ne bodo dopustili, da se v prikaz HTML strani vkljuci

skripta s tretjega streznika, Cetudi tretji streznik nima pravilno vzpostavljenega SSL
protokola. Napadalec bo moral svoj streznik vpisati v DNS, moral si bo priskrbeti
zaupanja vreden digitalni certifikat, sicer brskalniki Zrtev s tega streznika ne bodo
hoteli zaganjati ‘javascript' ukazov.

To za napadalca sicer ni nekaj, kar je nemogoce izvesti, a je vseeno to v dolocenih
primerih prevec in pretezko in bo napad raje opustil.

Nastavitve postnih sistemov

Nastavitve postnih sistemov so lahko pri obrambi zelo pomembne, saj smo pokazali,
da je 'phishing' napad na zrtev marsikdaj sestavni del napada. Posebej to velja za
‘Reflected' tip ranljivosti, ko mora napadalec Zrtev prepricati, da klikne na
zlonamerni link. V praksi se to najveckrat izvede s pomocjo 'phishing' e-mail napada.

Glede postnih sistemov izpostavljamo dvoje:

® Postni sistemi bi morali zaustavljati posto, ki prihaja od zunaj, a hkrati navaja, da jo
posilja notranji uporabnik.

® Postni sistemi bi morali zaustavljati posto, ki prihaja od zunaj, a hkrati navaja, da jo
posilja uporabnik iz domene, ki v resnici ne obstaja.

24

S temi nastavitvami seveda ne preprecimo vseh 'phishing' e-mail napadov, vsekakor
pa praksa pokaze, da vidno zmanjSamo verjetnost uspeha 'phishing' e-mail napadov.

WAF - Web Application Firewall

Marsikatero zlorabo spletnih aplikacij prepre¢imo tako, da skripte spletne aplikacije
podrobno preverjajo doloceno vsebino. Tudi pri XSS ranljivostih je to nujno
potrebno.

Taksno preverjanje lahko namesto aplikacije izvaja WAF. WAF je naprava, ki stoji
pred spletnimi aplikacijami in je specializirana za zaznavanje in preprecevanje cele
vrste znanih in neznanih zlorab spletnih aplikacij.

e Pri WAF je potrebno razumeti, da so tovrstni
[| sistemi lahko zelo ucinkoviti pri preprecevanju
t. i. tehnic¢nih ranljivostih. So pa omejeni pri
prepreCevanju ranljivosti, ki izhajajo iz
»napacne« logike aplikacij. Vcasih je spletne
aplikacije mozZno zlorabiti tako, da ne
izvajamo tehni¢nih napadov z nenavadnimi
klici in znaki, ampak uporabimo aplikacijo na
drugacen nacin, kot je predvideno.

XSS ranljivosti sodijo v klasi¢éne tehni¢ne
ranljivosti in WAF sistem aplikacije lahko zelo

ucinkovito in uspesno zasciti pred tovrstnimi
ranljivostmi.

Vendar pozor. WAF je sistem, ki varuje aplikacije in ne uporabnike. XSS napad pa je
usmerjen na uporabnike. Uporabnike v podjetju WAF zavaruje v smislu, da ni mogo¢
XSS napad preko njihove spletne aplikacije.

Symantec Web Isolation

Ce je WAF namenjen varovanju nase spletne strani in aplikacij, pa je Web Isolation
reSitev, ki neposredno varuje uporabnike pred razlicnimi zlorabami, ki izhajajo iz
obiska spletnih strani v Internet omrezju, vklju¢no seveda z XSS zlorabami.

Sistem zascite deluje tako, da uporabniki ne dostopajo neposredno do spletnih
aplikacij izven nasega omreZja, ampak do njih dostopajo preko tega sistema. Sistem
namesto uporabnikov brska po spletnih straneh, uporabnikom pa nato posreduje
samo vizualno sliko uporabe. 'Javascript' in podobni ukazi se tako ne izvajajo v
brskalnikih uporabnikov, ampak na vmesnem sistemu. Uporabnik ima z aplikacijo
tako enako vizualno in vsebinsko izkusnjo, istoc¢asni pa je ucinkovito zas¢iten pred
napadi, tudi XSS napadi.

25

8.

eyl Viri in dodatne informacije

Razlage 'Cross-site-scripting' ranljivosti

https:/en.wikipedia.org/wiki/Cross-site_scripting
https:/www.acunetix.com/websitesecurity/cross-site-scripting/
https:/www.acunetix.com/websitesecurity/xss/
https:/www.youtube.com/watch?v=r790zjCL7DA
https:/www.youtube.com/watch?v=M_nllcKTxGk

Zascita pred 'Cross-site-scripting' ranljivostmi

https:/www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https:/www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https:/www.techieweblog.com/network-security-techie/how-to-protect-from-xss-attack/
https:/www.checkmarx.com/2017/10/09/3-ways-prevent-xss/
https:/www.wordfence.com/learn/how-to-prevent-cross-site-scripting-attacks/

Ostale informacije povezave s 'Cross-site-scripting' ranljivostmi

https:/en.wikipedia.org/wiki/Web_application_firewall
https:/www.symantec.com/products/web-isolation

26

BELA KNJIGA

Preverite, katerim varnostnim tveganjem in ranljivostim
je izpostavljen vas informacijski sistem.

Nasi strokovnjaki vam bodo pomagali pri oceni varnostnih tveganj in
na kaksen nacin pristopiti k reSevanju XSS ranljivosti.

Vprasajte nasega strokovnjaka za kibernetsko varnost Vladimirja Bana.

2% vladimir.ban@smart-com.si

Smart Com ima 27-letno tradicijo na podrocju IKT in je eden izmed vodilnih sistemskih
integratorjev v Jugovzhodni Evropi. Nasi strokovnjaki so specialisti za povezovanje vrhunskih
tehnologij v sisteme, ki za stranke predstavljajo poslovne resitve z visoko dodano vrednostjo.

MrezZna infrastruktura, kibernetska varnost in nadzorni sistemi so nase najmocnejse strokovne
specializacije. Prizadevamo se za vzpostavljanje partnerstev, ki temeljijo na medsebojnem
zaupanju za udejanjanje strateskih in poslovnih vizij.

www.smart-com.si

© Smart Com

