
BELA KNJIGA

Vladimir Ban

Kako preprečiti
'Cross-site-scripting' napade

Kazalo vsebine

3

5

8

11

14

Kaj je Cross-site-scripting – osnovna razlaga

Kaj je Cross-site-scripting – tehnična razlaga

Kdaj in kako pride do ranljivosti?

Zakaj je Cross-site-scripting nevaren?

Kakšni so nivoji »jakosti« Cross-site-scripting ranljivosti?

Kako poteka napad preko Cross-site-scripting ranljivosti?

Kako se ubraniti pred Cross-site-scripting grožnjami?

Kako poteka napad preko Cross-site-scripting ranljivosti?Še več koristnih informacij

18

22

26

Uvod
Velika večina današnjih storitev v Internet omrežju se izvaja preko spletnih aplikacij.
Tehnologija spletnih aplikacij je postala sestavni del našega življenja. Brez spletnih
aplikacij si praktično ne znamo več predstavljati Internet omrežja.

Znano pa je, da spletne aplikacije prinašajo tudi veliko varnostnih groženj, med
katerimi so nekatere lahko zelo nevarne - kraja podatkov, vdor v strežnik, zloraba
identitet ipd.

Skripte in napake v programski kodi niso edini izvor varnostnih ranljivosti spletnih
aplikacij. Spletne aplikacije so lahko ranljive tudi zaradi napačnih varnostnih
nastavitev strežnikov in operacijskih sistemov, na katerih tečejo, oziroma slabe
zasnove same logike aplikacije.

Dodatno so tu še grožnje, ki izhajajo iz slabih avtentikacijskih mehanizmov za
uporabnike in/ali skrbnike aplikacij. Pozabiti ne smemo niti na grožnje, ki izhajajo iz
prisluškovanja prometu in slabih SSL implementacij.

Pri tem moramo poudariti, da med ogrožene aplikacije ne sodijo zgolj tiste, ki so že
na prvi pogled vsebinsko potencialno problematične (npr. spletna banka, spletna
trgovina ipd.), ampak tudi vse ostale, vključno s (splošnimi) spletnimi mesti podjetij.
Marsikatera tehnična ranljivosti in posledično grožnja se enako nanaša na vse tipe
spletnih aplikacij, ne glede na njihovo vsebino.

Grožnje mnogokrat izhajajo iz tehnično slabo
zasnovanih spletnih strani in aplikacij. Mnogo
groženj se nanaša na tehnične podrobnosti
posameznih skript oz. programčkov, ki
sestavljajo posamezno spletno aplikacijo.
Lastnik aplikacije se tovrstnih ranljivosti
velikokrat niti ne zaveda, saj kot prvo spletne
aplikacije verjetno ni izdelal sam, kot drugo, pa je
programski jezik skript velikokrat nerazumljiv oz.
nepoznan lastnikom.

1

Spletne aplikacije tako skrivajo celo vrsto tehnično in vsebinsko zelo različnih
ranljivosti. Ker predstavljajo pomembno vez med uporabniki in podatki, v resnici
velikokrat predstavljajo glavno grožnjo informacijskim sistemom v podjetjih.

Res je, da lahko enostavna spletna stran, v primerjavi s kompleksnejšo spletno
aplikacijo, prinaša manj točk, kjer lahko napadalec izkoristi razne tehnične
ranljivosti. Vendar pa so enostavne spletne strani po drugi strani lahko za napadalce
še bolj privlačne, saj varnostni mehanizmi znotraj posameznih skript niso tako
zapleteni in močni, kot to (na srečo) velja za bolj zapletene spletne aplikacije.
Tehnična grožnja je lahko enako nevarna, ne glede na to ali se ranljivost nahaja
znotraj kompleksne spletne aplikacije, ali pa na neki drugi enostavni spletni strani. V
dokumentu tako enačimo pojma spletnih aplikacij in spletnih strani, saj z vidika
groženj praktično ni razlik.

Nekatere ranljivosti so v praksi pogoste, nekatere pa se pojavljajo redkeje. Nekatere
predstavljajo večjo grožnjo, druge pa predstavljajo zgolj manjšo ogroženost. Ena
izmed ranljivosti spletnih strani, ki smo jo pri izvajanju varnostnih pregledov
različnih spletnih aplikacij pogosto zaznali, hkrati pa ta ranljivost prinaša nevarnejše
grožnje, je 'Cross-site-scripting' (kratica XSS).

2

V nadaljevanju dokumenta bomo podrobneje obrazložili ozadje te ranljivosti,
kakšna tveganjaprinaša, kje in kdaj se najbolj pogosto pojavlja in nenazadnje, kako
se pred takšno ranljivostjo obvarujemo.

Spletne aplikacije delujejo tako, da se uporabniki preko svojih spletnih brskalnikov
pogovarjajo z aplikacijo, ki teče na strežniku. Brskalnik aplikaciji posreduje določene
pakete (podatke, klice, vprašanja ipd.), aplikacija pa nato vrača vsebino, ki se prikaže
v brskalniku.

Aplikacija brskalniku vsebino pošilja v obliki HTML zapisov. HTML jezik je zelo
enostaven in posledično tudi zelo omejen. Namenjen je predvsem statičnim
predstavitvam različne vsebine. V sodobnih aplikacijah na interaktivnih spletnih
straneh je takšna omejitev prevelika, zato se je v HTML jeziku že dokaj zgodaj pričel
uveljavljati 'javascript' programski jezik. 'Javascript' programski jezik daje HTML
stranem bistveno več vsebine in interaktivnosti.

Ko se brskalnik pogovarja s spletno aplikacijo, ta brskalniku poleg klasične HTML
vsebine, pošilja tudi 'javascript' ukaze. 'Javascript' ukazi se izvršujejo v brskalniku in
tako dajejo uporabniku dodatno kvaliteto pri prikazovanju spletnih strani.

Če je aplikacija že v osnovi zlonamerna, lahko brskalnikom naloži izvajanje ukazov,
ki bodo povzročili zlonamerno dejanje.

Če aplikacija to dovoljuje (v nadaljevanju bomo podrobneje pogledali, na kakšen
način), potem takšno ranljivost imenujemo 'Cross-site-scripting' oz. krajše XSS.

Ker pa je 'javascript' jezik v
svojih zmogljivostih bistveno
manj omejen, njegova uporaba
prinaša določene varnostne
grožnje. 'Javascript' ukaze, ki se
med delom s spletno aplikacijo
izvajajo v brskalniku, določa
aplikacija.

3

Kaj je Cross-site-scripting
– osnovna razlaga

1.
poglavje

Pri 'Cross-site-scripting' ranljivosti pa imamo v resnici dobronamerno aplikacijo, ki
sama po sebi nima namena brskalnikom nalagati zlonamernih ukazov. Vendar ima
tehnično ranljivost, ki napadalcem omogoča vplivati na to, kateri 'javascript' ukazi se
posredujejo brskalnikom.

Pri XSS gre torej za tehnično ranljivost aplikacije, ki jo napadalec tako ali drugače
izkoristi, z namenom škodovati uporabnikom aplikacije in ne aplikaciji sami.
Omenjena specifika včasih povzroča »zmedo« pri razumevanju ranljivosti, hkrati pa
ranljivost neupravičeno postavlja v manj pomemben položaj. Kar je lahko zelo
zavajajoče. XSS ranljivost lahko pomeni zelo hude grožnje, ki jih bomo podrobneje
tudi opredelili. Na tem mestu omenimo glavne tri:

Ravno v tem pogledu so (splošne) spletne strani podjetij pomembne. Četudi
gostujejo in ne vsebujejo omembe vrednih podatkov in funkcij, še vedno velja, da
zaposleni v podjetju svoji spletni strani zaupajo. V kolikor vsebuje XSS ranljivost,
lahko napadalec zelo učinkovito napade uporabnike in preko njih in XSS izvede
napad v notranjost podjetja.

4

nepooblaščena prijava v aplikacijo,
prevzem skrbniških pravic nad aplikacijo in
vdor v notranjost omrežja podjetja.

Na dveh poenostavljenih primerih si bomo XSS ranljivost ogledali bolj podrobno.

Imamo spletno stran, kjer objavljamo novice, hkrati pa uporabnikom omogoča
funkcionalnost komentiranja novic. Vpisani komentarji postanejo del spletne strani
in se ob vsakem obisku novice izpišejo obiskovalcem.

V normalni situaciji uporabnik pod komentar vpiše »Dober članek!«. Ko pride drug
obiskovalec na to stran, aplikacija njegovemu brskalniku vrne HTML kodo, ki na
koncu vsebuje ta zapis. Napadalec lahko namesto komentarja vpiše 'javascript'
zlonamerno kodo. Ko v tem primeru tretji obiskovalec pride na stran, aplikacija
»komentar« napadalca doda v HTML kodo in jo pošlje brskalniku obiskovalca. Če je
koda napisana pravilno, brskalnik uporabnika meni, da gre pri tem delu zapisa
dejansko za 'javascript' kodo, ki jo tudi izvede in ne samo izpiše.

Primer 1:

5

Kaj je Cross-site-scripting
– tehnična razlaga

2.
poglavje

Imamo spletno stran, ki vsebuje funkcionalnost iskalnika.

V normalni situaciji uporabnik v polje iskalnika vpiše »SmartCom«. Aplikacija nato
vrne uporabniku HTML stran, ki med drugim vsebuje stavek »Rezultati iskanja
besede SmartCom so naslednji…« in potem doda izpisek najdenih besed.

Če pa namesto besede »SmartCom« nekdo v iskalno polje vpiše 'javascript kodo',
aplikacija v HTML odgovoru vrne »Rezultati iskanja besede javascript koda so …«. Ko
HTML odgovor pride do brskalnika, se del »javascript koda« izvede in ne zgolj izpiše
kot besedilo.

Navedena primera sta razmeroma poenostavljena in v resnici bi se za boljše
razumevanje morali poglobiti še v nekaj tehničnih podrobnosti (o tem bolj podrobno
v naslednjih poglavjih), vendar dokaj jasno in točno prikazujeta dva dejanska tipa
XSS ranljivosti.

Ta tip ranljivosti izkorišča način delovanja aplikacije, ko ta v bazo (ali drugam) zapiše
vhodni podatek uporabnika. Ta podatek pa v prihodnosti uporabi pri generiranju
HTML strani pri drugih uporabnikih. 'Stored' XSS ranljivost v primerjavi z 'Reflected'
tipom XSS ranljivosti ne potrebuje neposredne interakcije s svojo žrtvijo. Napadalec
'nastavi past' v dobronamerni (a ranljivi) aplikaciji in čaka, da se bo uporabnik/žrtev
v to past ujela.

6

'Stored Cross-site-scripting'

Primer 2:

Prvi tip je 'Stored Cross-site-scripting'.
Drugi tip je 'Reflected Cross-site-scripting'.

Napadalec lahko na ta način napada žrtve, ki jih sploh ne pozna. Če napadalec pri
svojem napadu cilja na točno določeno žrtev, pa je odvisen od tega, ali žrtev
dejansko obišče del aplikacije, kjer je nastavljena past. Če ni jasno razvidno, da bo
konkretna žrtev prej ali slej obiskala stran, kjer je past postavljena, si lahko
napadalec na primer pomaga s 'social-engineering' trikom. Napadalec postavi past,
nato pa žrtvi pošlje e-mail sporočilo, kjer jo poskuša zavesti k obisku strani. Pri tem
napadalec nima vnaprej zagotovljenega uspeha, da bo žrtev res obiskala stran.
Zavedati se moramo, da URL naslov, kamor napadalec želi preusmeriti žrtev, ni sam
po sebi zlonameren. Kot prvo kaže na zaupanja vredno spletno stran, kot drugo URL
naslov ne vsebuje zlonamernih klicev (ti »čakajo« na spletni strani). Verjetnost, da bo
žrtev tak klik izvedla, je lahko zato zelo velika.

Ta tip ranljivosti je kot zrcalo. Aplikacija res dopušča, da ji nekdo posreduje vhodne
podatke tako, da bo ta vrnila zlonamerne 'javascript' klice, a ti klici se vedno vrnejo
pošiljatelju, torej tistemu, ki je zlonamerne vhodne podatke posredoval.

Ker napadalec nima namena napadati samega sebe, je odvisen od dodatnih trikov,
ki jih mora v napadu uporabiti. Očiten primer takšnega dodatnega trika je 'phishing'
e-mail sporočilo, v katerega vstavi URL povezavo. V primerjavi s 'phishing' e-mail
sporočilom, ki smo ga omenjali pri 'Stored' tipu ranljivosti, je tu za napadalca zadeva
bolj zapletena, saj mora URL link v sporočilu dejansko vsebovati tudi zlonamerno
'javascript' kodo. Zlonamerno kodo napadalec torej ne »shrani« v aplikacijo, ampak
jo mora vstaviti v URL naslov, na katerega mora žrtev tudi (nehote) klikniti.

Na prvi pogled se zdi, da je XSS ranljivost 'Reflected' tipa manj nevarna, saj je
napadalec neposredno odvisen od odziva žrtve. Vendar se v praksi izkaže, da so
načini zavajanja lahko zelo učinkoviti. Načinov, kako napadalec vstavljeno
'javascript' zlonamerno kodo skrije/zakrije v URL naslovu, je več.

Še več, tovrstne ranljivosti so bolj pogoste na spletni strani, tako da napadalec nima
prevelikih težav z identifikacijo ranljivih točk v aplikaciji, ki jih nato tudi uporabi.

7

'Reflected Cross-site-scripting'

Razlika med ranljivostma je v načinu, na katerega aplikacija dopušča napadalcu, da v
odgovorih dobronamerna aplikacija uporabnikom posreduje zlonamerne 'javascript'
ukaze, ter kako napadalec ranljivost dejansko izrabi v praksi. Ne razlikujeta pa se v
posledicah. V obeh primerih zlonamerna 'javascript' koda pride do brskalnika
uporabnika in se tam izvede in v obeh primerih lahko napadalec uporablja enake
zlonamerne 'javascript' klice.

Aplikacija je pri generiranju HTML odgovora uporabila podatek, ki je prišel od
uporabnika (ali s predhodnim klicem – če gre za 'Reflected' tip ranljivosti, oziroma iz
baze – kadar gre za 'Stored' tip ranljivosti) in s tem nehote v HTML kodo vstavila
zlonamerne 'javascript' ukaze.

Na dveh primerih poglejmo zadevo bolj podrobno.

Aplikacija deluje tako, da v danem trenutku vzame podatek o URL naslovu, ki ga je
nazadnje uporabil uporabnik, in ga vstavi v svojo HTML kodo, ki jo v naslednjem
odgovoru posreduje brskalniku.

Aplikacija deluje tako, da iz nekega vpisanega parametra, ki ga je prejela, vzame
vsebino in to vsebino kot besedilo vstavi v HTML kodo, ki jo v naslednjem odgovoru
posreduje brskalniku.

8

Kdaj in kako pride do ranljivosti?
3.

poglavje

Primer 1:

Primer 2:

Navedena primera sta zelo realna, a je takoj jasno, da se 'javascript' koda ne bo
izvedla sama od sebe, kljub temu, da je aplikacija vsebino z zlonamerno 'javascript'
kodo vstavila v HTML odgovor. Zlonamerna vsebina je v HTML odgovor vstavljena
tako, da brskalnik tega ne dojame kot ukaz. Vstavljena vsebina je namreč del
stavkov/vrstic, ki s predhodnimi narekovaji in ostalimi znaki, vstavljeno 'javascript'
kodo »pokvarijo«.

Napadalci morajo zato zlonamerni kodi dodati še nekaj znakov, s katerimi poskrbijo,
da se v HTML odgovoru najprej pravilno zaključi nek drug začeti stavek. In vrinjena
'javascript' koda pride do izraza na ta način, da jo brskalnik prepozna. Napadalec
lahko v navedenih primerih izvede naslednje.

Primer, ko napadalec vrine zgolj 'javascript' kodo.

Z dodatki se situacija v HTML odgovoru spremeni v prid napadalca. Znaki na
začetku vsebine povzročijo, da se začeta vsebina HTML strani ustrezno zaključi.
Znaki na koncu vsebine pa sicer niso nujno potrebni za zagon 'javascript' ukazov.
Dodani so zato, da onemogočijo, da vsebina HTML strani kodo vizualno ali kako
drugače »pokvari«.

Kaj točno mora napadalec v danem trenutku dodati zlonamerni 'javascript' kodi je
odvisno od primera do primera. Znani so klasični triki, točno delujoča kombinacija
»trikov« pa je odvisna od konkretne situacije. Potrebno se je zavedati, da za
napadalca ta del ni problematičen. Na voljo je kar nekaj učinkovitih orodij, ki jih
napadalec lahko uporabi, hkrati pa lahko z osnovnim znanjem HTML kode to naredi
tudi sam.

To velja tako za podatke, kjer je takoj jasno, da jih je vpisal uporabnik, kot tudi za
podatke, ki jih uporabnik ni neposredno vnesel, lahko pa vpliva na njihovo vsebino.
Recimo podatek o tipu brskalnika, ki ga uporabnik uporablja – gre za »sistemski«

Primer, ko napadalec 'javascript' kodi na začetku vsebine doda znake »/>, na koncu
pa znake <!-.

9

Izvirni »greh« aplikacije je, da podatkov pri
prevzemu ni ustrezno preverila – če vsebujejo
'javascript' ukaze ali druge posebne znake, ki
so tipični pri zlorabi takšnih ranljivosti. Vsi
vhodni podatki, ki se nato tako ali drugače
uporabijo pri generiranju HTML strani, se
morajo preveriti, preden se dejansko
uporabijo.

podatek, ki ga brskalnik sam doda http paketom pri komunikaciji z aplikacijo, vendar
napadalec lahko s posebnimi skriptami ali programi tudi v takšen podatek vstavi
zlonamerne 'javascript' klice.

Kako točno mora aplikacija izvajati preverjanje, bomo podrobneje opredelili v
ločenem poglavju, tu navajamo nekaj izhodišč, ki so se nakazala v zgornjih primerih:

V teoriji je vse jasno. Spoznali pa bomo, da v praksi niso vsi načini preverjanja tudi
nujno učinkoviti ali možni.

Dodatno je za aplikacijo pomembno, da zagotovi tudi druge obrambne mehanizme,
ki (ne)posredno vplivajo na uspešnost XSS napadov.

Aplikacija lahko preverja vsebino podatkov, ki jih želi uporabiti, če morebiti vsebujejo
posebne znake, ki se tipično uporabljajo pri zaključevanju HTML stavkov.

Aplikacija lahko preverja vsebino podatkov, ki jih želi uporabiti, če morebiti vsebujejo
konkretne 'javascript' ukaze.

Aplikacija lahko preverja vsebino podatkov, ki jih želi uporabiti, če morebiti vsebujejo
posebne znake, ki se tipično uporabljajo v 'javascript' sintaksi.

10

11

Zakaj je Cross-site-scripting
nevaren?

4.
poglavje

Preden nadaljujemo s tehnično razlago okoliščin XSS ranljivosti je čas, da
pogledamo, kakšne so lahko možne posledice tovrstnih napadov. V besedilu
uporabljamo izraz »zlonamerna« koda. Za kaj v resnici pravzaprav gre? Kaj lahko
povzroči? Kaj 'javascript' jezik zmore in česa se lahko (upravičeno) bojimo?

Grožnje, ki jih programski jezik prinaša, lahko razdelimo v štiri skupine:

Princip avtentikacije v spletnih aplikacijah je poseben. O tem bi lahko napisali
ločeno poglavje, a na kratko razloženo, je izziv sledeč. S stališča uporabnikov je
zadeva enostavna. Uporabnik se prijavi v aplikacijo in od tam dalje so mu na voljo
razne funkcionalnosti. Če se ne prijavi, dostopa do funkcionalnosti nima.

S stališča aplikacije pa temu ni tako. Aplikacija sprejema klice iz Internet omrežja,
sestavljeni iz množice http paketov, ki prihajajo z različnimi zahtevki. Nekatere
pakete pošiljajo uporabniki, ki se v aplikacijo še niso prijavili, nekatere pa prijavljeni
uporabniki. Aplikacija lahko brez posebnih mehanizmov spozna, kateri paket
pripada kateri TCP seji, a to s samo avtentikacijo v aplikaciji nima povezave. Delo
uporabnika v aplikaciji namreč sproža večje število TCP sej in nepraktično bi bilo, da
bi se moral uporabnik na začetku vsake seje posebej in ponovno avtenticirati.
Aplikacija zato uporabi 'Cookie' podatke. Po uspešni avtentikaciji uporabnika
aplikacija generira vrednost, ki ni uganljiva. Vrednost zapiše v bazo in jo hkrati v
obliki 'Cookie' vrednosti pošlje brskalniku uporabnika. Brskalnik nato poskrbi, da je
vsak paket, ki je posredovan aplikaciji, opremljen s tem podatkom in tako aplikacija
ve ali določen paket dejansko pripada nekemu uporabniku in kateremu pripada. To
je poenostavljen primer uporabe 'Cookie' vrednosti. V praksi lahko aplikacija
mehanizem še dodatno »zakomplicira«, a večino aplikacij deluje na ta način.

Če napadalec uporabniku uspe ukrasti 'Cookie' podatek, lahko v njegovem imenu
nepooblaščeno vstopa v aplikacijo. Eden izmed klasičnih načinov kraje tega podatka
je preko 'javascript' ukazov. 'Javascript' ukazi so zmožni v brskalniku prebrati
'Cookie' podatek in ga posredovati napadalcu. Pri XSS ranljivosti torej napadalec
lahko poskuša doseči, da pri uporabniku ranljiva aplikacija sproži ukaze, ki ukradejo
'Cookie' vrednost in jo pošlje uporabniku.

kraja 'Session Cookie' podatka,
zavajanje uporabnika v brskalniku,
pridobivanje informacij iz brskalnika in
ostali napadi.

Kraja 'Session Cookie' podatka

12

Napadalci si za cilj velikokrat postavijo prevzem kontrole nad delovno postajo žrtve.
To lahko dosežejo z raznimi zlonamernimi datotekami, ki vsebujejo sistemske klice
in posegajo neposredno v operacijski sistem. Vendar 'javascript' jezik takšnih klicev
ne pozna. Napadalec torej ne more sestaviti 'javascript' ukaznega zaporedja, ki bi
mu neposredno omogočalo dostop do operacijskega sistema. V tem smislu je
'javascript' za napadalca močno omejen. V pomoč pa je lahko. Če želijo prevzeti
kontrolo nad delovno postajo svoje žrtve, jo morajo zavesi k zagonu zlonamerne
datoteke.

'Javascript' lahko pri takšnem zavajanju zelo pomaga. Ko žrtev obišče zaupanja
vredno aplikacijo, lahko napadalec vnese 'javascript' ukaze, ki na različne načine
preuredijo spletno stran.

Napadalec lahko z 'javascript' ukazi uporabniku pri delu z ranljivo aplikacijo prikaže
lažna vstopna okna. Uporabnik obišče zaupanja vredno aplikacijo. 'Javascript' nato
uporabniku med delom na brskalniku prikaže prijavno okno v Gmail ali Facebook
sistem. Uporabnik misli, da se je brskalnik odjavil iz sistemov, zato vpiše svoja gesla
in nadaljuje delo s pravo aplikacijo. S tem ima napadalec dostop do Gmail ali
Facebook računa žrtve. Že to je zelo nerodno, dodatno lahko napadalec preko teh
kanalov žrtev še enostavneje prepriča v namestitev zares škodljive datoteke.

Ko uporabnik obišče ranljivo aplikacijo, se v brskalniku pojavi okno, ki
uporabnika pozove k namestitvi posodobitev za ogled vsebine. Ker se
uporabnik nahaja na zaupanja vredni aplikaciji, je verjetnost, da bo to naredil
dokaj velika. Napadalec seveda poskrbi, da se v tem primeru na delovno
postajo uporabnika namesti prava zlonamerna »exe« datoteka.

Ko uporabnik obišče ranljivo aplikacijo in klikne na neko funkcijo, se izvede
»tiha« 'redirekcija' na lažni strežnik, ki je poln zlonamernih datotek (na primer v
aplikaciji klikne na prenos PDF, 'javascript' ukazi pa poskrbijo, da se na delovno
postajo uporabnika prenese okužen PDF iz lažnega strežnika in ne iz pravega).

Zavajanje uporabnika v brskalniku

Naslavljanje »bližnjic«, ki jih CPU-ji uporabljajo in ki so se sedaj izkazale kot nevarne,
je na videz enostavnejše. Takšne popravke lahko izvedemo na nivoju operacijskih
sistemov (ali s popravki delovanja BIOS-a), oziroma celo na nivoju programske
opreme (ko govorimo o konkretnih napadih na brskalnike preko Spectre ranljivosti).
Vendar je tudi tukaj težava. Neizbežno bodo ti popravki vplivali na performančno
zmogljivost CPU, saj nenazadnje direktno naslavljajo (torej preprečujejo ali pa vsaj
močno omejujejo) uporabo »bližnjic«, ki so jih do sedaj CPU pridno izkoriščale. Vpliv
na performance CPU je torej neizbežen, res pa je, da še ni čisto jasno, kako se bo ta
vpliv kazal na dejanske hitrosti izvajanja posameznih aplikacij. Pravih podatkov,
analiz in nenazadnje izkušenj s tem v praksi seveda še ni na voljo.

'Javascript' ukazi ne morejo posegati v operacijski sistem delovne postaje, lahko pa
dostopajo do določenih sistemskih podatkov. To so na primer IP naslov delovne
postaje, nameščene verzije brskalnika in dodatkov ipd. Gre za tehnične podatke, ki
neposredno ne predstavljajo vdora v omrežje, jih pa napadalec lahko dokaj
učinkovito uporabi pri nadaljnjih fazah napada, saj sedaj točno ve, kakšne ranljivosti
lahko znotraj pravih zlonamernih kod izkoristi. S tem je napadalcu razkrita
marsikatera neznanka, brez katere bi bila priprava napada daljša ali pa bi bil napad
celo neuspešen.

V to skupino sodijo vse ostale potencialne in možne zlorabe. Nikoli ne smemo
podcenjevati zmožnosti in domišljije napadalcev.

Izpostavimo 'javascript' kodo, ki se omenja v aktualnih ranljivostih 'Specter', kjer naj
bi bilo možno preko 'javascript' ukazov izkoriščati najnovejše ranljivosti na Intel
procesorjih. Možno naj bi bilo posegati v integriteto brskalnikov, kjer zavihek, ki
dostopa do zlonamerne strani, posega v ostale zavihke, kjer uporabnik dostopa do
varnih aplikacij. Do sedaj je tak »preskok« med zavihki veljal za nemogočega.

13

Pridobivanje informacij iz brskalnika

Ostali napadi

V dosedanjih poglavjih smo spoznali, kaj ranljivost je, kako nastane oz. se pojavi in
kakšne so možne posledice. V povezavi z ranljivostjo pa je potrebno razumeti še
naslednje.

Ranljivost ni »črno-bela«. Obstajajo mesta v aplikaciji, ki so brez tovrstnih ranljivosti,
obstajajo mesta, kjer lahko ranljivost v polnosti izkoristimo, obstajajo pa lahko tudi
mesta, kjer ranljivost tehnično obstaja, a je napadalec soočen z omejitvami, ki so
rezultat varnostnih mehanizmov ali pa (za napadalca) »splet nesrečnih okoliščin«.

Definirajmo najprej, kdaj je aplikacija sploh ni ranljiva in kaj pomeni, da je aplikacija
v določeni točki polno ranljiva. Predpostavimo, da imamo mesto v aplikaciji, kjer
dejansko pride do tega, da aplikacija prevzame določen vhodni podatek in ga
prepiše v HTML odgovor brskalniku.

Ko govorimo o zlonamerni 'javascript' kodi velja. Bolj je koda zlonamerna, bolj je
kompleksna. Četudi aplikacija nima varnostnih mehanizmov proti XSS ranljivosti, si
lahko predstavljamo, da bi napadalci v določenih primerih imeli vsaj praktično
težavo, kako v nek podatek vriniti kompleksno 'javascript' kodo, dolžine tudi nekaj
100 kB. Zato napadalci radi izkoriščajo naslednjo lastnost HTML strani. HTML stran
lahko neposredno vsebuje vse 'javascript' ukaze, ki so del nekega odgovora, lahko
pa vsebuje zgolj navodilo brskalnikom, da ob prikazu te HTML strani iz tretjega
strežnika poberejo 'javascript' datoteko in jo zaženejo. Če je takšno »navodilo«
možno vriniti, pravimo, da je aplikacija na tej točki polno ranljiva, saj napadalec nima
težav glede tega, katere 'javascript' ukaze lahko uporabi, katere pa ne.

Če na drugi strani aplikacija v neki točki »prepisuje« vhodne podatke v HTML
odgovor, vendar hkrati ne obstaja nobena možnost za vnos zlonamernih ukazov,
pravimo, da aplikacija v tej točki ni ranljiva.

14

Kakšni so nivoji »jakosti«
Cross-site-scripting ranljivosti?

5.
poglavje

Smiselno je razumeti, kakšna so lahko takšna »vmesna« stanja, saj lahko tako
skrbniki lažje določijo prioritete potrebnih popravkov.

Aplikacijo bomo smatrali za
polno ranljivo, če lahko na tej
točki brskalniku v HTML odgovor
vrinemo navodilo (v obliki
'javascript' ukaza), da ob prikazu
strani iz napadalčevega strežnika
pobere in zažene poljubno
'javascript' datoteko.

Vmesna stanja so tista, kjer po eni strani ne drži, da napadalec ne more aplikaciji
vriniti posebnih znakov ali 'javascript' ukazov, vendar hkrati tudi ne more v polnosti
uporabiti vseh ukazov, ki bi si jih želel.

Oglejmo si ta vmesna stanja na štirih primerih.

V dokumentu smo večkrat omenili, da aplikacija brskalnikom posreduje HTML
odgovore. V resnici pa lahko aplikacija brskalnikom posreduje odgovore tudi v
drugačni obliki (recimo tekstovni, json obliki ipd.). Brskalniki bodo 'javascript' ukaze
izvajali le, če se nahajajo v odgovoru, ki je deklariran kot HTML.

Lahko se torej zgodi, da aplikacija v neki točki dejansko prevzame vhodni podatek in
ga brez omejitev prepiše v svoj odgovor brskalniku, vendar bo tak odgovor označen
kot ne-HTML format. Napadalec lahko v takšnih primerih res posreduje brskalnikom
svojih žrtev odgovore, ki vsebujejo polno zlonamerno 'javascript' kodo. Vendar
napadalec brskalnikov neposredno ne bo mogel prepričati, da kodo sploh
upoštevajo kot 'javascript' kodo.

Takšne točke torej niso neposredno kritične. Je pa potrebno v teh primerih vzeti v
obzir celotno delovanje aplikacije. Če lahko aplikacija pod določenimi pogoji in
okoliščinami takšne odgovore vseeno nekje drugje interpretira v HTML obliki, je
zloraba teoretično še vedno možna. Ali je temu tako ali ne, pa je včasih težko
oceniti.

Odprava tovrstnih točk ni nujna, še vedno pa je priporočljiva, razen, če dejansko
lahko ocenimo, da naknadni prenos v HTML obliko ni mogoč.

Druga skrajnost so primeri, ko aplikacija »preveč« dobesedno »prepisuje« vhodne
podatke v HTML odgovore. Ta primer je pomemben predvsem za 'Reflected' tip
ranljivosti.

Ko uporabnik vpiše URL naslov (ali pa na njega klikne), brskalnik na URL naslovu
izvede URL kodiranje. To pomeni, da se določeni posebni znaki pretvorijo v nek drug
zapis (tipičen primer je, da brskalnik preslek prevede v %20). To brskalniki ne storijo
zaradi varnosti, ampak zato, da URL naslovi morebiti ne bi povzročili kakšnih
tehničnih težav na prenosu. A posredno s tem lahko močno otežijo delo napadalcem
pri XSS 'Reflected' ranljivostih.

15

1 Aplikacija posreduje brskalnikom ne-HTML odgovore

2 Aplikacija preveč neposredno prenaša vhodne podatke

jo je napadalec podtaknil v URL naslov, a bo aplikacija to popravila in 'javascript'
koda bo ob predpisu v HTML odgovor ponovno takšna, kot mora biti.

Lahko se zgodi, da aplikacija bolj slučajno kot namerno vhodni zapis prepiše v HTML
odgovor (tipičen primer je, ko v glavo HTML odgovora enostavno s 'copy-paste'
vstavi URL naslov, ki ga je klical uporabnik). V takšnih primerih ni nujno, da aplikacija
izvede URL dekodiranje in 'javascript' koda se v HTML odgovor zapiše v
»pokvarjeni« obliki, v takšni kot jo je poslal brskalnik.

Če napadalec teste izvaja ročno brez brskalnika, izgleda kot, da ranljivost obstaja, a
v praksi jo bo težko izrabiti, saj bo žrtev URL do aplikacije vedno poslala preko
brskalnika.

Napadalcu tukaj preostane dvoje. Teoretično je možno, da napadalec pred napadom
žrtvi podtakne skripto ali programček, ki prepreči, da brskalnik izvede URL
kodiranje. Vendar je to težko in hkrati se postavlja vprašanje, zakaj napadalec sploh
išče XSS ranljivost, če pa je svoji žrtvi tako ali tako že zmožen podtikati razne
programčke in skripte.

Druga možnost, ki pa je v »zamiranju«, izhaja iz dejstva, da ni nujno, da brskalnik
zares izvede URL kodiranje. Določeni brskalniki (npr. Internet Explorer) do
nedavnega tega niso počeli. Torej obstaja vsaj hipotetična možnost, da ima
uporabnik brskalnik, ki tega ne bo izvedel in je napad potemtakem pri njem izvedljiv.
Vsekakor takšne točke niso kritične na enak način, kot tiste, kjer je izraba ranljivosti
polna, zgolj iz previdnosti pa svetujemo, da se takšne točke odpravijo.

V primerih, ko aplikacija dejansko
pričakuje vhodni podatek oz. se
zaveda, da gre za podatek, ki je del
URL zapisa, aplikacija najprej
izvede URL dekodiranje oz. vse
posebne znake zapiše nazaj v
prvotno obliko. Brskalnik žrtve bo
res »pokvaril« 'javascript' kodo, ki

Izvedeli smo že, da mora napadalec pri 'Reflected' tipu ranljivosti žrtvi podtakniti
URL naslov, ki vsebuje zlonamerne znake in kodo.

Vendar aplikacija ne sprejema podatkov zgolj iz URL klica. Aplikacije lahko podatke
sprejemajo tudi iz vsebine prejetih paketov (brskalnik pošlje podatke v POST obliki
in ne v GET obliki), hkrati pa lahko aplikacija vhodne podatke prevzema iz zaglavja
prejetih paketov (podatek, ki govori o tipu brskalnika uporabnika). Tehnično gledano
lahko aplikacija tudi v takšnih primerih te vhodne podatke na nevaren način uporabi
pri generiranju HTML odgovora.

3 'Reflected' ranljivost znotraj vsebine paketa ali zaglavja

16

sporočilu je zelo nevaren in povsem realen. Napad v katerem napadalec doseže, da
žrtev aplikaciji pošlje zlonamerno kodo v notranjost http paketa, pa zelo neverjeten
in prej hipotetičen kot realen.

Preden takšno točko opredelimo kot nekritično še pozor! Včasih se zgodi, da
aplikacija v neki točki pošlje aplikaciji vnesene podatke v POST obliki. Test pokaže,
da aplikacija nato te podatke ne preveri in posledično imamo XSS 'Reflected'
ranljivost, ki pa jo ne moremo izrabiti. A marsikdaj aplikacije hkrati podpirajo GET in
POST klice in napadalec lahko v tem primeru malce spremeni aplikacijo. Napadalec
enostavno podatke iz POST klica premakne v GET klic in takšen klic podtakne žrtvi.
Kot rečeno smo v praksi že videli kar nekaj primerov, kjer je takšen napad deloval.

Če test ni uspešen, lahko zaključimo, da ranljivost ni kritična. Vseeno pa
priporočamo, da se jo odpravi, saj ni nujno, da napadalec ne najde načina izrabe.

Zadnji primer je redek, a smo ga pri varnostnih pregledih spletnih aplikacij v praksi
že zaznali. Včasih se zgodi, da aplikacija uporabi le del podatkov pri generiranju
novega HTML odgovora. Aplikacija pričakuje vnos nekega besedila in nato v
odgovoru prikaže le prvih 50 znakov tega besedila. Če aplikacija pri tem prenosu ne
izvaja preverjanj glede 'javascript' ukazov, je aplikacija še vedno ranljiva. Napadalec
je sicer omejen na prvih 50 znakov, kar v danih okoliščinah ni nujno dovolj za
izvedbo napada.

Tovrstni primeri so glede ocene ogroženosti nehvaležni. Pregledovalec oz. skrbnik
lahko oceni, da znotraj omejitve ne zna ali ne more sestaviti pravega napada, a to še
ne pomeni, da tega ne zmore tudi napadalec. Nikoli ne smemo podcenjevati znanja
in domišljije napadalcev.

Takšne točke v aplikaciji praviloma označimo kot kritične, za takojšno odpravo,
četudi neposredno prave zlorabe nismo dokazali.

Imamo torej situacijo (ki je v resnici dokaj
pogosta pri odkritih XSS ranljivostih),
kjer lahko s testom pokažemo, da znamo
v podatek znotraj vsebine paketa ali v
zaglavje vriniti zlonamerno kodo, ki se
potem v polni obliki pojavi v HTML
podatku. Tehnično gledano je to klasična
XSS 'Reflected' ranljivost.

V praksi pa bo napadalec težko pripravil
napad, kjer bo žrtev enak paket poslala
aplikaciji. Napad, ko napadalec vso
zlonamerno kodo vpiše v URL in ta URL
naslov podtakne žrtvi v 'phishing' e-mail

17

4 Tehnične specifike brskalnikov ali aplikacij, ki nehote
omejujejo 'Cross-site-scripting' napade

S stališča napadalca mora v aplikaciji najprej identificirati možne točke zlorabe,
nato mora pripraviti ustrezne vnose s pravilnimi dodanimi znaki, da se bo
zlonamerna 'javascript' koda zares izvedla. Na koncu pa mora pripraviti dejansko
zlonamerno skripto, ki pa je lahko zelo kompleksna.

O predpripravi v tem dokumentu ne bomo veliko govorili. Opozarjamo pa, da je
mišljenje, da je to zelo težko narediti, napačno. Obstaja namreč cela vrsta orodij, ki
bolj ali manj uspešno identificirajo potencialne ranljive točke, obstaja pa tudi cela
knjižnica že pripravljenih 'javascript' modelov, ki jih napadalec lahko uporabi za
različne napade. Vsekakor napadalec potrebuje nekaj znanja o 'javascript' ukazih in
HTML kodi, a sklepanje, da so napadi omejeni zgolj na peščico 'javascript'
veleumov je daleč od resnice.

Na štirih primerih si podrobneje oglejmo potek napada v praksi, od točke, ko je
napadalec že identificiral ranljivo mesto v aplikaciji in so zlonamerne skripte že
pripravljene za napad.

Aplikacija omogoča vpisovanje komentarjev na straneh. Napadalec lahko pripravi
besedilo za komentar, ki v resnici na ustrezen način vsebuje zlonamerne 'javascript'
kode. Če aplikacija pri vnosu komentarjev ne preverja vsebine, je vnos
zlonamernih skript dokaj enostaven. Verjetno napadalec še največ časa porabi
za dodatke v besedilu, ker želi 'javascript' ukaze vnesti tako, da se pri žrtvi
izvedejo, brez, da ta postane sumničava.

Ko napadalec v spletno stran vrine svoje zlonamerne komentarje, je dovolj, da
počaka, da stran obiščejo drugi uporabniki. Če je spletna stran manj obiskana
(marsikdaj se zgodi, da so XSS ranljivosti bolj prisotne na »starejšem« delu spletne
aplikacije, ki se ne uporablja več) ali pa napadalec cilja na točno določeno
osebo, bo morebiti moral še dodatno izzvati osebo, da obišče točno določeno
stran. To lahko stori z e-mail 'phishing' sporočilom. Takšno sporočilo bo zelo
verjetno uspešno, saj sam URL naslov ne vsebuje nič zlonamernega, zato ga
napadalcu ni potrebno skriti. V komentarje novice http://spletna.stran/
novica_dneva.html vpiše zlonamerno kodo in nato pošlje e-mail sporočilo
»Hej, poglej to novico http://spletna.stran/novica_dneva.html!«.

Kako poteka napad preko
Cross-site-scripting ranljivosti?

6.
poglavje

Napad št. 1 – 'Stored' XSS napad preko vnosnih polj –
napad na druge uporabnike ali skrbnika

18

Če z napadom cilja na skrbnike, jih lahko enako uspešno »prepriča«, da obiščejo
stran z nastavljeno pastjo. Na določeno stran podtakne zlonamerno kodo, nato pa
na strani izvede celo vrsto provokativnih komentarjev, ali pa stran zasuje s
komentarji. Marsikateri skrbnik bo pogledal, kaj se dogaja.

Konkretni primeri:

Prvi primer je povsem realen, a ga v praksi redko srečamo. Razvijalci vedo, da je
komentar zelo očitna možna točka vnosa zlonamernih podatkov, zato so tam
varovalke v veliki meri urejene.

Bolj premeten način je vnos zlonamernih podatkov v profil uporabnika. Napadalec si
ustvari svoj profil (če gre za spletno stran, ki to omogoča) in v polje (recimo svoj
naslov) vnese zlonamerno 'javascript' kodo.

Takšen način je predvsem praktičen pri napadu na skrbnika. Uporabniki redko
obiskujejo profile drugih uporabnikov (aplikacija verjetno tega sploh ne dopušča).
Skrbnik pa ima praviloma vpogled v vse profile.

Napad št. 2 – 'Stored' XSS napad preko vnosov
podatkov v profil uporabnika

Imamo spletno trgovino in spletna stran omogoča komentarje pri artiklih.
Napadalec v te komentarje vstavi zlonamerno kodo. Preko kode dobi na primer
'Cookie' vrednost vseh žrtev, ki artikel obiščejo in tako (preko 'Cookie'
vrednosti) izvede prijavo v aplikacijo. Lahko pa z 'javascript' kodo povzroči, da se
uporabniku pojavi lažno prijavno okno v spletno trgovino. Uporabnik misli, da se je
brskalnik odjavil in se ponovno prijavi, s tem pa napadalcu razkrije svoje geslo.

Imamo spletno stran, ki omogoča komentarje. Napadalec cilja na skrbnika.
Vnese provokativen komentar (bodisi veliko njih, ali pa vsebinsko provokativen).
Morebiti nato celo izvede funkcijo »prijavi žaljiv komentar«. Zelo verjetno bo
skrbnik preveril na strani, kaj se dogaja, napadalec pa bo tako dobil bodisi 'Cookie'
vrednost skrbnika, bodisi njegovo geslo.

19

Pri tem je lahko napadalec potrpežljiv, zgolj vnese kodo v svoj profil ter čaka, da
skrbnik pogleda v svoj profil. Lahko pa je napadalec malce bolj provokativen. Na
slovenski spletni strani ustvari profil uporabnika, ki na videz prihaja iz Japonske. Ali
pa v spletni trgovini ustvari uporabnika, izvede veliko število naročil, ki jih nato takoj
prekliče. Možna je tudi situacija, kjer hkrati generira večje število uporabnikov s
provokativnimi imeni. Skratka, načinov kako izzivati skrbnika, da odpre stran z
našim profilom, je več, in marsikateri je zelo učinkovit. Če je napadalec uspel v
stran s profilom vnesti zlonamerno kodo, so 'Cookie' vrednost skrbnika ali pa
njegova gesla zopet v nevarnosti.

Prejšnja dva primera sta se nanašala na situacije, kjer je dejansko obstajalo vnosno
polje, ki ga aplikacija ni dovolj zaščitila. Vnosna polja so točke v aplikaciji, kjer je
jasno, da uporabnik neposredno vpliva na besedilo, zato so dobre varovalke na
takšnih točkah pogostejše.

Bistveno manj pogoste so varovalke na točkah, kjer ni takoj jasno, da gre za vnosni
podatek uporabnika. Na primer aplikacija, ki beleži zadnje prijave. Aplikacija ob
prijavi samodejno pobere iz http paketov podatke kot so IP naslov, iz katere spletne
strani je uporabnik prišel ter tip brskalnika. Vse te podatke nato aplikacija izpisuje v
funkciji »pregled zadnjih prijav«.

Vse lepo in prav, a tudi v tem primeru bi morala aplikacija pred beleženjem teh
podatkov natančno preveriti vsebino. Čeprav ne gre za podatke, ki jih je
neposredno vpisal uporabnik, lahko napadalec na njih vpliva. Podatek o tipu
brskalnika je podatek, ki ga brskalnik samodejno vpiše v paket, preden ga pošlje
aplikaciji. Napadalec lahko brez večjih težav pripravi skripto, kjer podatek
spremeni tako, da mu doda zlonamerne 'javascript' ukaze.

Gre za tipičen napad na skrbnika, saj ostali uporabniki praviloma ne obiskujejo
pregleda drugih uporabnikov. Pri tem lahko napadalec izbere taktiko
»potrpežljivega čakanja«, lahko pa izbere taktiko »provokacije«. Napadalec
izvede mnogokratno prijavo ali pa stori nekaj nenavadnega z namenom, da
skrbnik preveri, kdo je ta uporabnik in od kje se prijavlja.

Prvi trije primeri so se nanašali na 'Stored' tip ranljivosti, ta primer pa se nanaša na
'Reflected' tip ranljivosti.

Zelo pogost primer je primer neobstoječih strani. Spletna stran dobi URL zahtevek.
Če konkretna podstran obstaja, jo prikaže, če pa ne obstaja, pa uporabnika
preusmeri na prvo stran. Pri tem pa se v glavo HTML strani zapiše nazadnje klicani
URL.

Napad št. 3 – 'Stored' XSS napad preko seznama
zadnjih prijav

Napad št. 4 – 'Reflected' XSS pri URL klicih

20

Če v takšnem primeru napadalec pošlje URL naslov
http://spletna.stran/...javascipt_koda..., bo aplikacija vrnila nazaj prvo stran (saj
točno takšna podstran s takšnim naslovom ne obstaja), v glavo HTML strani pa bo
brez preverjanja vpisala klicani URL naslov in pri prikazu bo brskalnik
izvedel 'javascript' kodo.

Povedali smo že, da mora pri 'Reflected' tipu ranljivosti napadalec sedaj ta URL
naslov nekako podtakniti žrtvi, da sama klikne na njega.

V osnovi je to relativno enostavno. Dejstvo je, da so 'phishing' e-mail napadi
velikokrat uspešni, v tem primeru pa je podtaknjen URL naslov vsaj delno legalen.
Začne se namreč z http://spletna.stran/... kar je nekaj, čemur uporabnik zaupa.

Vseeno pa ima napadalec manjšo težavo. Napadalec v takem URL linku ne more
skriti drugega dela linka, kjer je napisana 'javascript' koda. Marsikateri uporabnik na
ta del sicer ni pozoren, a je 'javascript' koda vseeno »govoreča« in čeprav uporabnik
ne pozna 'javascript' ukazov, se mu določene besede hitro lahko zdijo sumljive.

Jasno je tudi, da v URL naslov ne moremo podtikati dolge kode, saj je URL naslov, ki
se razteza »čez 3 strani«, že sam po sebi sumljiv.

Napadalec lahko naredi dvoje. Kot prvo bo pri 'Reflected' ranljivostih skoraj vedno
uporabil podtikanje 'javascript' ukazov, ki bodo brskalniku velevali, da si 'javascript'
kodo prenese iz drugih strežnikov. Hkrati pa bo tudi ta del 'javascript' kode skril v
obliki …document.write(String.CharCode(1,2,3,…))… Tu napadalec izkorišča
zmožnost v 'javascript' jezika, kjer lahko na mestu ukaza navede string, sestavljen iz
posameznih znakov, kjer znakov sploh ne navede, ampak navede zgolj 'char' kodo
tega znaka. Tako je zlonameren link, ki ga podtakne svojim žrtvam, naslednji
http://zapianja_vredna_stran/.../..document.write(String.CharCode(1,2,3,...))... Kar
pa ni več tako sumljivo in je uspeh zavajanja žrtev realnejši.

Kaj natančno je namen napadalca, je nato odvisno od same aplikacije. Napadalec
lahko tako uporabnikom krade 'Cookie' vrednosti, lahko poizkuša izvesti prevaro, s
katero si bodo uporabniki naložili »exe« zlonamerne datoteke… Skratka, od tu dalje
lahko napadalec vsebinsko izvaja vse tiste napade, ki smo jih že našteli v tem
dokumentu.

21

Za konec poglejmo še, kako se lahko ubranimo pred XSS grožnjami. Načinov je več
in marsikdaj je smiselna kombinacija uporabe več različnih načinov.

Prvi del obrambe se nanaša na same spletne aplikacije. Izvirni greh pri aplikacijah
izhaja iz dejstva, da aplikacija privzame vsebino, ki jo je posredno ali neposredno
vnesel uporabnik. To vsebino nato uporabi pri pripravi HTML odgovorov za
uporabnike, pri tem pa ne izvede preverjanja ali morebiti ta vsebina vsebuje kaj
zlonamernega.

Skripte v aplikacijah morajo torej poskrbeti, da se vsi vhodni podatki ustrezno
preverijo, vsebina, ki bi lahko prinašala nevarnost pa se mora bodisi odstraniti,
bodisi preurediti, da ne predstavlja nevarnosti.

Pri 'javascript' obrambi imamo na voljo to olajševalno okoliščino, da je 'javascript'
jezik zelo odvisen od posebnih znakov. Tako je marsikdaj povsem dovolj, da na
podatkih izvedemo kodiranje in vsi posebni znaki se bodo spremenili na ta način, da
bo 'javascript' koda neveljavna, hkrati pa se bodo ti znaki še vedno pravilno
prikazovali, če so slučajno sestavni del legalnih podatkov.

Kako točno to znotraj kode izvedemo, je za razvijalca zelo enostavno. Na voljo pa so
tudi različne skripte za različna okolja; najdete jih na povezavah, ki jih navajamo v
zadnjem poglavju.

Ne gre toliko za vprašanje, kako točno izvesti preverjanje podatkov, ampak bolj za
vprašanje, ali se je razvijalec sploh spomnil, da bi bilo to nujno potrebno in ali je to
preverjanje dejansko izvedel na vseh točkah in ne samo na nekaterih.
Napadalec bo preveril vse teoretično možne točke vnosa (nenazadnje mu pri tem
pomagajo različni učinkoviti programi), tako da je za njega dovolj, da razvijalec
pozabi na varovalko v eni sami točki.

Kako se ubraniti pred
Cross-site-scripting grožnjami?

7.
poglavje

Filtriranje znotraj skript spletne aplikacije

22

Kot rečeno, vprašanje »kako narediti dober filter« ne bi smelo biti prvotnega
pomena, saj je na voljo dovolj narejenih in mnogokrat preizkušenih filtrov. Vseeno
pa še vedno srečamo aplikacije, kjer filtri obstajajo, a je kmalu jasno, da gre za
unikatne filtre, ki jih je sprogramiral razvijalec. Sicer to še ne pomeni, da niso varni,
a praksa se v praksi velikokrat izkaže nasprotno. Med dejanskimi pregledi smo
zaznali primere kjer

Skratka, prvi del obrambe proti XSS napadom je ustrezno preverjanje podatkov v
aplikaciji, kjer mora veljati naslednje:

Na uspešnost XSS napadov lahko vplivajo tudi nastavitve spletnih strežnikov.
Omenimo predvsem dve:

je aplikacija na vseh vnosnih podatkih iskala in brisala zapise <script>, a razvijalec je
pri tem spregledal, da je to sicer najbolj tipičen način klicanja 'javascript' ukazov, ni pa
edini.

je aplikacije določene posebne znake spreminjala v neke druge znake in s tem kvarila
'javascript' sintakso. A napad je bil z uporabe »Replace« funkcije še vedno mogoč.

je aplikacija omejevala izpis na 50 znakov, hkrati pa je odstranjevala vse zapise v
obliki http:… Na videz je aplikacija tako preprečila vnos kompleksnejših 'javascript'
zaporedij, hkrati pa je preprečila, da bi se vstavilo navodilo brskalnikom, da si
'javascript' privzamejo z drugih strežnikov. A preko 'String.CharCode' je
možno takšno varovalko zaobiti.

'Cookie' mora biti označen kot 'http-only'. 'Http-only' oznaka preprečuje 'javascript' ukazom
dostop do vrednosti 'Cookie' podatkov. Zaščita je dokaj enostavna in je zelo učinkovita.
Tovrstna nastavitev je na žalost mnogokrat spregledana.
Vendar pozor. To je zgolj zaščita pred napadi, ki imajo za cilj krajo 'Cookie' vrednosti.
Velikokrat se zgodi, da skrbniki poskrbijo za nastavitev, a niso pozorni na XSS ranljivosti. Kar
pa ni prav, saj smo v dokumentu pokazali, da kraja 'Cookie' vrednosti ni edina grožnja
'javascript' ukazov.

TRACE metoda mora biti deaktivirana. To pravilo sicer počasi zamira. Gre namreč za to, da
vklopljena TRACE metoda negira 'http-only' nastavitev na strežniku. Tehnično gledano je
znan napad, kjer napadalec preko XSS ranljivosti lahko pridobi 'Cookie' vrednost, četudi ima
ta vklopljeno 'http-only' zaščito. V praksi pa temu ni več tako, saj sodobni brskalniki že sami
po sebi dokaj učinkovito negirajo uporabo TRACE klicev. Situacija, ko ima strežnik vklopljeno
TRACE metodo, niti ne več tako kritična. A vseeno še vedno priporočamo deaktivacijo
TRACE metode, saj je mnogokrat popolnoma nepotrebna.

Preverjanje podatkov mora biti vključeno na vseh točkah, ki so neposredno vezane
na vnosne podatke.

Preverjanje podatkov mora biti vključeno na vseh točkah, ki so zgolj posredno vezane
na vnosne podatke.

Pri preverjanju podatkov priporočamo uporabo že narejenih in preverjenih skript in
ne razvoj lastnih skript.

Nastavitev strežnika

23

Omembe vredna je še ena nastavitev, in sicer vzpostavitev SSL protokola. Vsi vemo,
da je SSL primarno namenjen šifriranju podatkov in na prvi pogled ni takoj jasno,
kakšna je njegova povezava z XSS ranljivostmi.

Obstajajo primeri, ko aplikacije v HTML odgovore ne vrivajo celotne 'javascript'
kode, ampak povsem zadostuje, da brskalniku naložijo nalogo, da si kompleksnejšo
skripto pri prikazovanju HTML strani enostavno naloži iz tretjega strežnika. Tu pride
do izraza delovanje sodobnih spletnih brskalnikov. V primeru, da naša aplikacija
uporablja SSL protokol, ti ne bodo dopustili, da se v prikaz HTML strani vključi
skripta s tretjega strežnika, četudi tretji strežnik nima pravilno vzpostavljenega SSL
protokola. Napadalec bo moral svoj strežnik vpisati v DNS, moral si bo priskrbeti
zaupanja vreden digitalni certifikat, sicer brskalniki žrtev s tega strežnika ne bodo
hoteli zaganjati 'javascript' ukazov.

To za napadalca sicer ni nekaj, kar je nemogoče izvesti, a je vseeno to v določenih
primerih preveč in pretežko in bo napad raje opustil.

Nastavitve poštnih sistemov
Nastavitve poštnih sistemov so lahko pri obrambi zelo pomembne, saj smo pokazali,
da je 'phishing' napad na žrtev marsikdaj sestavni del napada. Posebej to velja za
'Reflected' tip ranljivosti, ko mora napadalec žrtev prepričati, da klikne na
zlonamerni link. V praksi se to največkrat izvede s pomočjo 'phishing' e-mail napada.

Glede poštnih sistemov izpostavljamo dvoje:

Poštni sistemi bi morali zaustavljati pošto, ki prihaja od zunaj, a hkrati navaja, da jo
pošilja notranji uporabnik.

Poštni sistemi bi morali zaustavljati pošto, ki prihaja od zunaj, a hkrati navaja, da jo
pošilja uporabnik iz domene, ki v resnici ne obstaja.

24

S temi nastavitvami seveda ne preprečimo vseh 'phishing' e-mail napadov, vsekakor
pa praksa pokaže, da vidno zmanjšamo verjetnost uspeha 'phishing' e-mail napadov.

Marsikatero zlorabo spletnih aplikacij preprečimo tako, da skripte spletne aplikacije
podrobno preverjajo določeno vsebino. Tudi pri XSS ranljivostih je to nujno
potrebno.

Takšno preverjanje lahko namesto aplikacije izvaja WAF. WAF je naprava, ki stoji
pred spletnimi aplikacijami in je specializirana za zaznavanje in preprečevanje cele
vrste znanih in neznanih zlorab spletnih aplikacij.

Če je WAF namenjen varovanju naše spletne strani in aplikacij, pa je Web Isolation
rešitev, ki neposredno varuje uporabnike pred različnimi zlorabami, ki izhajajo iz
obiska spletnih strani v Internet omrežju, vključno seveda z XSS zlorabami.

Sistem zaščite deluje tako, da uporabniki ne dostopajo neposredno do spletnih
aplikacij izven našega omrežja, ampak do njih dostopajo preko tega sistema. Sistem
namesto uporabnikov brska po spletnih straneh, uporabnikom pa nato posreduje
samo vizualno sliko uporabe. 'Javascript' in podobni ukazi se tako ne izvajajo v
brskalnikih uporabnikov, ampak na vmesnem sistemu. Uporabnik ima z aplikacijo
tako enako vizualno in vsebinsko izkušnjo, istočasni pa je učinkovito zaščiten pred
napadi, tudi XSS napadi.

Vendar pozor. WAF je sistem, ki varuje aplikacije in ne uporabnike. XSS napad pa je
usmerjen na uporabnike. Uporabnike v podjetju WAF zavaruje v smislu, da ni mogoč
XSS napad preko njihove spletne aplikacije.

Pri WAF je potrebno razumeti, da so tovrstni
sistemi lahko zelo učinkoviti pri preprečevanju
t. i. tehničnih ranljivostih. So pa omejeni pri
preprečevanju ranljivosti, ki izhajajo iz
»napačne« logike aplikacij. Včasih je spletne
aplikacije možno zlorabiti tako, da ne
izvajamo tehničnih napadov z nenavadnimi
klici in znaki, ampak uporabimo aplikacijo na
drugačen način, kot je predvideno.

WAF – Web Application Firewall

Symantec Web Isolation

XSS ranljivosti sodijo v klasične tehnične
ranljivosti in WAF sistem aplikacije lahko zelo
učinkovito in uspešno zaščiti pred tovrstnimi
ranljivostmi.

25

26

Razlage 'Cross-site-scripting' ranljivosti

Zaščita pred 'Cross-site-scripting' ranljivostmi

Ostale informacije povezave s 'Cross-site-scripting' ranljivostmi

https://en.wikipedia.org/wiki/Cross-site_scripting
https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://www.acunetix.com/websitesecurity/xss/
https://www.youtube.com/watch?v=r79ozjCL7DA
https://www.youtube.com/watch?v=M_nIIcKTxGk

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.techieweblog.com/network-security-techie/how-to-protect-from-xss-attack/
https://www.checkmarx.com/2017/10/09/3-ways-prevent-xss/
https://www.wordfence.com/learn/how-to-prevent-cross-site-scripting-attacks/

https://en.wikipedia.org/wiki/Web_application_firewall
https://www.symantec.com/products/web-isolation

Viri in dodatne informacije
8.

poglavje

Smart Com ima 27-letno tradicijo na področju IKT in je eden izmed vodilnih sistemskih

tehnologij v sisteme, ki za stranke predstavljajo poslovne rešitve z visoko dodano vrednostjo.
Mrežna infrastruktura, kibernetska varnost in nadzorni sistemi so naše najmočnejše strokovne
specializacije. Prizadevamo se za vzpostavljanje partnerstev, ki temeljijo na medsebojnem
zaupanju za udejanjanje strateških in poslovnih vizij.

vladimir.ban@smart-com.si

www.smart-com.si

© Smart Com

BELA KNJIGA

Preverite, katerim varnostnim tveganjem in ranljivostim
je izpostavljen vaš informacijski sistem.

Naši strokovnjaki vam bodo pomagali pri oceni varnostnih tveganj in
na kakšen način pristopiti k reševanju XSS ranljivosti.

Vprašajte našega strokovnjaka za kibernetsko varnost Vladimirja Bana.

